首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing evidence has supported the concept that many of the enzymes and factors involved in the replication of mammalian DNA function together as a multiprotein complex. We have previously reported on the partial purification of a multiprotein form of DNA polymerase from human HeLa cells shown to be fully competent to support origin-specific large T-antigen-dependent simian virus 40 (SV40) DNA replication in vitro. In an attempt to more definitively identify the complex or complexes responsible for DNA replication in vitro, partially purified human HeLa cell protein preparations competent to replicate DNA in vitro were subjected to native polyacrylamide gel electrophoresis and electrophoretically transferred to nitrocellulose. The Native Western blots were probed with a panel of antibodies directed against proteins believed to be required for DNA replication in vitro. Apparent complexes of 620 kDa and 500 kDa were identified by monoclonal antibodies directed against DNA polymerase α and DNA polymerase δ, respectively. To detect epitopes possibly unexposed within the native multiprotein complexes, blots were also analyzed following denaturation in situ following treatment with detergent and reducing agent. The epitope or access to the epitope recognized by the monoclonal antibody against DNA polymerase α was destroyed by exposure of the blots to denaturing conditions. In contrast, an epitope present on a very large complex of approximately 1000 kDa was recognized by a monoclonal antibody against proliferating cell nuclear antigen only following treatment of the native immunoblots with denaturing agents. Identification of these complexes will allow their further purification, characterization, and elucidation of their role in the replication of DNA. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

5.
We previously reported on the purification and characterization of a functional multi‐protein DNA replication complex (the DNA synthesome) from human cells and tissues. The synthesome is fully competent to carry‐out all phases of the DNA replication process in vitro. In this study, DNA primase, a component of the synthesome, is examined to determine its activity and processivity in the in vitro synthesis and extension of RNA primers. Our results show that primase activity in the P4 fraction of the synthesome is 30‐fold higher than that of crude cell extracts. The synthesome synthesizes RNA primers that are 7–10 ribonucleotides long and DNA primers that are 20–40 deoxyribonucleotides long using a poly(dT) template of exogenous single‐stranded DNA. The synthesome‐catalyzed RNA primers can be elongated by E. coli DNA polymerase I to form the complementary DNA strands on the poly(dT) template. In addition, the synthesome also supports the synthesis of native RNA primers in vitro using an endogenous supercoiled double‐stranded DNA template. Gel analysis demonstrates that native RNA primers are oligoribonucleotides of 10–20 nt in length and the primers are covalently link to DNA to form RNA‐primed nascent DNA of 100–200 nt. Our study reveals that the synthesome model is capable of priming and continuing DNA replication. The ability of the synthesome to synthesize and extend RNA primers in vitro elucidates the organizational and functional properties of the synthesome as a potentially useful replication apparatus to study the function of primase and the interaction of primase with other replication proteins. J. Cell. Biochem. 106: 798–811, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64–66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39–57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase α and δ as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase α and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase α holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789–4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase α is blocked with the DNA polymerase α specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase δ can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

7.
A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding.  相似文献   

8.
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.  相似文献   

9.
10.
Most of the DNA polymerase α activity, bound to the heat-stabilized nuclear matrix prepared from HeLa S3 cells, was released as a matrix extract by sonication. When the extract was centrifuged in a 5–20 per cent linear sucrose gradient no definite peaks of activity could be identified. Most of the activity sedimented to the bottom of the tube under all the conditions tested, whilst the remaining activity was associated with matrix fragments of various and irregular size. No 10 S complexes, containing polymerase activity, were seen after incubation of the extract for 16 h before centrifugation. Other solubilization procedures (i.e. treatment of the matrix with chelating agents, high pH associated with reducing agents, ionic and nonionic detergents) failed to produce release of matrix-bound DNA polymerase α activity. In contrast, we released 10 S complexes, containing polymerase activity, from the matrix prepared from nuclei not exposed to heat. We conclude that a 37°C incubation of isolated nuclei before extraction with 2 M NaCl and DNase I digestion causes DNA polymerase α to bind to the nuclear matrix in a form that cannot subsequently be released as discrete components, at variance with previous results obtained with the matrix prepared from regenerating rat liver.  相似文献   

11.
Calf thymus DNA polymerase alpha-primase, human placenta DNA polymerase alpha-primase and human placenta DNA primase synthesized oligoriboadenylates of a preferred length of 2-10 nucleotides and multimeric oligoribonucleotides of a modal length of about 10 monomers on a poly(dT) template. The dimer and trimer were the prevalent products of the polymerization reaction. However, only the oligonucleotides from heptamers to decamers were elongated efficiently by DNA polymerase alpha.  相似文献   

12.
Earlier work of several laboratories established that the yields of radiation-induced ring and dicentric chromosomes are greater when human peripheral blood lymphocytes are irradiated in GH1 some hours after phytohemagglutinin stimulation than if they are irradiated in G0 before stimulation. Post-treatment of lymphocytes irradiated in G0 with the DNA polymerase inhibitor aphidicolin, which is effective against both pol and pol δ, produces a similar increase in ring and dicentric yield. We found that aphidicolin post-treatment was much less effective in increasing ring and dicentric yield increases in cells irradiated in G1 four to five hours after stimulation. Because we had earlier found specific inhibitors of DNA pol ineffective in producing increased yields in either G0 or G1 lymphocytes, we conclude that much of the G0 to G1 increase in yields is mediated by pol δ.  相似文献   

13.
Aphidicolin, a potent and specific inhibitor of eukaryotic DNA polymerase α, has been reported to inhibit repair DNA synthesis in ultraviolet-irradiated, normal human fibroblasts but not in HeLa cells. By the use of assays for repair other than the measurement of repair synthesis, it is shown here that repair in HeLa cells is in fact susceptible to aphidicolin. Severe inhibition of DNA repair, with failure of individual repair events to be completed, and a smaller number of lesions removed, can occur even though repair synthesis continues.  相似文献   

14.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

15.
Human DNA polymerase ι (polι) is a unique member of Y‐family polymerases, which preferentially misincorporates nucleotides opposite thymines (T) and halts replication at T bases. The structural basis of the high error rates remains elusive. We present three crystal structures of polι complexed with DNA containing a thymine base, paired with correct or incorrect incoming nucleotides. A narrowed active site supports a pyrimidine to pyrimidine mismatch and excludes Watson–Crick base pairing by polι. The template thymine remains in an anti conformation irrespective of incoming nucleotides. Incoming ddATP adopts a syn conformation with reduced base stacking, whereas incorrect dGTP and dTTP maintain anti conformations with normal base stacking. Further stabilization of dGTP by H‐bonding with Gln59 of the finger domain explains the preferential T to G mismatch. A template ‘U‐turn’ is stabilized by polι and the methyl group of the thymine template, revealing the structural basis of T stalling. Our structural and domain‐swapping experiments indicate that the finger domain is responsible for polι's high error rates on pyrimidines and determines the incorporation specificity.  相似文献   

16.
Formation of primed single‐stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR‐mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA‐mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y‐family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9‐1‐1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9‐1‐1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.  相似文献   

17.
We used electron microscopy to examine the structure of human DNA pol gamma, the heterotrimeric mtDNA replicase implicated in certain mitochondrial diseases and aging models. Separate analysis of negatively stained preparations of the catalytic subunit, pol gammaA, and of the holoenzyme including a dimeric accessory factor, pol gammaB(2), permitted unambiguous identification of the position of the accessory factor within the holoenzyme. The model explains protection of a partial chymotryptic cleavage site after residue L(549) of pol gammaA upon binding of the accessory subunit. This interaction region is near residue 467 of pol gammaA, where a disease-related mutation has been reported to impair binding of the B subunit. One pol gammaB subunit dominates contacts with the catalytic subunit, while the second B subunit is largely exposed to solvent. A model for pol gamma is discussed that considers the effects of known mutations in the accessory subunit and the interaction of the enzyme with DNA.  相似文献   

18.
The DNA polymerase α-DNA primase complex was purified over 17 000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 Å and a native molecular weight of 250–260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase α-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 Å in diameter, in agreement with the physicochemical results. The binding of the complex to DNA was also demonstrated.  相似文献   

19.
Human DNA polymerase β (polβ) is a small, monomeric protein essential for short‐patch base excision repair (BER). polβ plays an important role in the regulation of chemotherapy sensitivity in tumour cells. In this study, we determined that the expression levels of polβ mRNA and miR‐149 in tumour tissues were significantly higher than in adjacent non‐tumour tissues. We also found that the expression level of miR‐149 in EC tumour tissues was inverse to that of polβ expression. Bioinformatics analysis and dual‐luciferase reporter assay predicted that miR‐149 negatively regulates polβ expression by directly binding to its 3′UTR. CCK‐8 assay indicated that miR‐149 could enhance the anti‐proliferative effects of cisplatin in EC1 and EC9706 cell lines. Flow cytometry, caspase 3/7 activity, and immunofluorescence microscopy results indicated that miR‐149 could enhance the apoptotic effects of cisplatin in EC1 and EC9706 cell lines. We also showed that the expression of polβ lacking the 3′UTR sequence could override the proliferative and apoptotic functions of miR‐149, suggesting that miR‐149 negatively regulates polβ expression by binding to its 3′UTR. Surface plasmon resonance results also showed that miR‐149 could bind with wild‐type polβ. In addition, we identified a new variant of polβ (C1134G). In conclusion, this study confirms that miR‐149 may enhance the sensitivity of EC cell lines to cisplatin by targeting polβ, and that miR‐149 may be unable to regulate the C1134G variant of polβ. Based on these findings, potential drugs could be developed with a focus on enhanced sensitivity of EC patients to chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号