首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Half of congenital muscular dystrophy cases arise from laminin alpha2 (merosin) deficiency, and merosin-deficient mice (Lama2dy) exhibit a dystrophic phenotype. The abnormal development of thymus in Lama2dy mice, the occurrence of acetylcholinesterase (AChE) in the gland and the impaired distribution of AChE molecules in skeletal muscle of the mouse mutant prompted us to compare the levels of AChE mRNAs and enzyme species in thymus of control and Lama2dy mice. AChE activity in normal thymus (mean +/- SD 1.42 +/- 0.28 micromol acetylthiocholine/h/mg protein, U/mg) was decreased by approximately 50% in dystrophic thymus (0.77 +/- 0.23 U/mg) (p = 0.007), whereas butyrylcholinesterase activity was little affected. RT-PCR assays revealed variable levels of R, H and T AChE mRNAs in thymus, bone marrow and spinal cord. Control thymus contained amphiphilic AChE dimers (G2A, 64%) and monomers (G1A, 19%), as well as hydrophilic tetramers (G4H, 9%) and monomers (G1H, 8%). The dimers consisted of glycosylphosphatidylinositol-anchored H subunits. Western blot assays with anti-AChE antibodies suggested the occurrence of inactive AChE in mouse thymus. Despite the decrease in AChE activity in Lama2dy thymus, no differences between thymuses from control and dystrophic mice were observed in the distribution of AChE forms, phosphatidylinositol-specific phospholipase C sensitivity, binding to lectins and size of AChE subunits.  相似文献   

2.
Despite the great progress made in setting the basis for the molecular diversity of acetylcholinesterase (AChE), an explanation for the existence of two types of amphiphilic subunits, with and without glicosylphosphatidylinositol (GPI) (Types I and II), has not been provided yet. In searching whether, as for the deficiency of dystrophin, that of merosin (laminin-alpha2 chain) alters the number of caveolae in muscle, a high increase in caveolin-3 (Cav3) was observed in the Triton X-100-resistant membranes (TRM) isolated from muscle of merosin-deficient dystrophic mice (Lama2dy). The rise in Cav3 was accompanied by that of non-caveolar lipid rafts, as showed by the greater ecto-5'-nucleotidase (eNT) activity, a marker of non-caveolar rafts, in TRM of dystrophic muscle. The observation of AChE activity in TRM, the increased levels of rafts and raft-bound AChE activity in merosin-deficient muscle and the presence of phospholipase C-sensitive AChE dimers in TRM supported targeting of glypiated AChE to rafts. This issue and the involvement of TRM in conveying nicotinic receptors to the neuromuscular junction and particular muscarinic receptors to cardiac sarcolemma strongly support a role for lipid rafts in targeting ACh receptors and glypiated AChE. Their nearby location in the surface membrane may provide cells with a fine tuning for regulating cholinergic responses.  相似文献   

3.
The aims of our study were: to present cases of congenital muscular dystrophy (CMD) with deficiency in merosin and the importance of immunohistochemistry in the diagnosis of merosin-deficient CMD. In four years (1997-2000), we found three patients with merosin-deficient CMD, one of them having an unusual clinical and pathological manifestation of the disease. Muscle biopsies of gastrocnemius or quadriceps muscles were investigated. In addition with the conventional HE staining, indirect immunohistochemistry for merosin, dystrophin, utrophin and for the proteins of the dystrophin associated complex (α,β, γ- sarcoglycans; β-dystroglycan) was performed on cryosections. The findings suggest that there is no correlation between the clinical and histological picture of the disease and the expression of merosin in skeletal muscles. The degree of muscle involvment (assessed by histology) is parallel with the clinical neuromotor deficiency, but not with expression of merosin, which can be absent even in mild cases. The clinical investigations as well as current morphological techniques, only together with immunohistochemistry can differentiate between merosin - deficient CMD and other muscular dystrophy forms.  相似文献   

4.
Looking at cholinesterases (ChEs) changes in age-related mental impairment, the expression of ChEs in brain of senescence accelerated-resistant (SAMR1) and senescence accelerated-prone (SAMP8) mice was studied. Acetylcholinesterase (AChE) activity was unmodified and BuChE activity increased twofold in SAMP8 brain. SAMR1 brain contained many AChE-T mRNAs, less BuChE and PRiMA mRNAs and scant AChE-R and AChE-H mRNAs. Their content unchanged in SAMP8 brain. Amphiphilic (G(4)(A)) and hydrophilic (G(4)(H)) AChE and BuChE tetramers, besides amphiphilic dimers (G(2)(A)) and monomers (G(1)(A)) were identified in SAMR1 brain and their distribution was little modified in SAMP8 brain. Blood plasma does not seem to provide the excess of BuChE activity in SAMP8 brain; it probably arises from glial cell changes owing to astrocytosis.  相似文献   

5.
The change in the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in neoplastic colon and lung prompted us to study the possible effect of cancer on the expression of cholinesterases (ChEs) in kidney. Samples of papillary renal cell carcinoma (pRCC), conventional RCC (cRCC), chromophobe RCC (chRCC) and renal oncocytoma (RON), beside adjacent non-cancerous tissues, were analyzed. In pRCC both AChE and BuChE activities were statistically increased; in cRCC and chRCC only AChE activity increased and in RON neither AChE nor BuChE activities were affected. Abundant amphiphilic AChE dimers (G(2)(A)) and fewer monomers (G(1)(A)) were identified in healthy kidney as well as in all tumour classes. Incubation with PIPLC revealed glycosylphosphatidylinositol in AChE forms. BuChE is distributed between principal G(4)(H), fewer G(1)(H), and much fewer G(4)(A) and G(1)(A) species. RT-PCR showed similar amounts of AChE-H, AChE-T and BuChE mRNAs in healthy kidney. Their levels increased in pRCC but not in the other tumour types. The data support the idea that, as in lung tumours, in renal carcinomas expression of ChE mRNAs, biosynthesis of molecular components and level of enzyme activity change according to the specific kind of cell from which tumours arise.  相似文献   

6.
The proportions and the glycosylation of butyrylcholinesterase (BuChE) forms in vesicles rich in sarcoplasmic reticulum from normal (NMV) and dystrophic (DMV) muscle were analyzed, using merosin-deficient dystrophic mice. BuChE activity in DMV was two- to threefold that in NMV. Globular amphiphilic G1A, G2A, and G4A and hydrophilic G4H BuChE forms were identified in NMV and DMV. The amount of G2A forms increased sevenfold in DMV, and the other forms increased about twofold. The higher BuChE level in DMV might reflect a maturational defect, with dystrophy preventing the down-regulation of BuChE with muscle development. About half of G1A, G2A, and G4H BuChE forms in NMV or DMV bound to Lens culinaris agglutinin (LCA), a higher fraction to wheat germ agglutinin (WGA), and little to Ricinus communis agglutinin (RCA). Most of the G4A forms in NMV or DMV bound to LCA or WGA; those from NMV failed to bind to RCA, whereas most of the variants in DMV bound to it, suggesting that the excess of tetramers in DMV is mainly RCA-reactive. The differential interaction of lectins with BuChE components from muscle microsomes, serum, and nerves confirmed that the microsomal BuChE was muscle-intrinsic. The results provide clues regarding the alterations that dystrophy produces in the biosynthesis of BuChE forms in muscle.  相似文献   

7.
The ecto-5'-nucleotidase (eNT) activity and the eNT protein content in liver of normal and merosin-deficient dystrophic Lama2dy mice were studied. After the solubilization procedure, the eNT activity in the final extract was 9.2+/-2.5U/mg (nmol of phosphate released from AMP per min and per mg protein) in normal liver, and it rose to 16.1+/-3.9U/mg (P=0.005) in dystrophic liver. The increase of activity was less pronounced in Lama2dy liver (1.7-fold) than the one reported in muscle (four-fold), which probably reflects the lower content of merosin in liver. Similarly to muscle, liver contained active and inactive eNT, as demonstrated by the higher level of immunoreactive protein in normal than in dystrophic liver in Western blots performed with samples containing the same units of eNT activity. PNGase F digestion decreased the size of liver and muscle eNT from 72 and 69kDa, to 63 and 60kDa. Oligoglycan cleavage did not alter eNT activity or the sedimentation coefficient, revealing that oligosaccharides are not required for catalysis or for maintaining the dimeric structure. The eNT protein content in samples of normal liver decreased by 55 or 80% after the trypsinolysis of native or deglycosylated enzyme, but the activity did not change. Such a high proportion of inactive eNT is unlikely to come from aged enzyme, which suggests the involvement of inactive enzyme in non-catalytic actions.  相似文献   

8.
Wild type and dystrophic (merosin-deficient) Lama2dy mice muscles were compared for their density of lipid rafts. The 5-fold higher level of caveolin-3 and the 2-3 times higher level of ecto-5’-nucleotidase activity in raft preparations (Triton X-100-resistant membranes) of dystrophic muscle supported expansion of caveolar and non-caveolar lipid rafts. The presence in rafts of glycosylphosphatidylinositol (GPI)-linked acetylcholinesterase (AChE) dimers, which did not arise from erythrocyte or nerve, not only revealed for the first time the capacity of the myofibre for translating the AChE-H mRNA but also an unrecognized pathway for targeting AChE-H to specialized membrane domains of the sarcolemma. Rafts of dystrophic muscle contained a 5-fold higher AChE activity/mg protein. RT-PCR for 3’-alternative mRNAs of AChE revealed AChE-T mRNA prevailing over AChE-R and AChE-H mRNAs in wild type mouse muscle. It also displayed principal 5’-alternative AChE mRNAs with exons E1c and E1e (the latter coding for N-terminally extended subunits) and fewer with E1d, E1a and E1b. The levels of AChE and butyrylcholinesterase mRNAs were unaffected by dystrophy. Finally, the decreased level of proline-rich membrane anchor (PRiMA) mRNA in Lama2dy muscle provided for a rational explanation to the loss of PRiMA-bearing AChE tetramers in dystrophic muscle.  相似文献   

9.
We have shown previously that the promotion of myofiber survival by the basement membrane component merosin (laminin-2 [alpha2beta1gamma1]/laminin-4 [alpha2beta2gamma1]) is dependent on the activity of the tyrosine kinase Fyn, whereas myofiber anoikis induced by merosin deficiency is dependent on the stress-activated protein kinase p38alpha. To further understand such merosin-driven survival signaling, we analyzed the expression of five Bcl-2 homologs (Bcl-2, Bcl-X(L), Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1) in normal and merosin-deficient myotubes, with or without pharmacological inhibitors for Fyn and p38. Herein, we report that (1) merosin deficiency induces anoikis and causes decreased Bcl-2, Bcl-X(L), and Bag-1 levels, increased Bax and Bak levels, and decreased Bad phosphorylation; (2) Bcl-2, Bcl-X(L), Bag-1, and Bad phosphorylation are also decreased in anoikis-dying, Fyn-inhibited myotubes; (3) the inhibition of p38alpha in Fyn-inhibited and/or merosin-deficient myotubes protects against anoikis and increases Bcl-2 levels above normal, in addition to restoring Bad phosphorylation and Bag-1 levels to normal; (4) the overexpression of merosin in deficient myotubes also rescues from anoikis and increases Bcl-2 levels and Bad phosphorylation above normal, in addition to restoring Bcl-X(L), Bag-1, Bax, and Bak levels to normal; and (5) Bcl-2 overexpression is sufficient to rescue merosin-deficient myotubes from anoikis, even though the expression/phosphorylation levels of the other homologs analyzed are not restored to normal. These results indicate that merosin-driven myofiber survival signaling affects complex, differential modulations of individual Bcl-2 homologs. These further suggest that Bcl-2 can play a major role in suppressing myofiber anoikis.  相似文献   

10.
11.
To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.  相似文献   

12.
Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) display both esterase and aryl acylamidase (AAA) activities. Their AAA activity can be measured using o-nitroacetanilide (ONA). In human samples depleted of acetylcholinesterase, we noticed that the ratio of amidase to esterase activities varied depending on the source, despite both activities being due to BuChE. Searching for an explanation, we compared the activities of BuChE molecular forms in samples of human colon, kidney and serum, and observed that BuChE monomers (G(1)) hydrolyzed o-nitroacetanilide much faster than tetramers (G(4)). This fact suggested that association might cause differences in the AAA site between single and polymerized subunits. This and other post-translational modifications in BuChE subunits probably determine their level of AAA activity. The higher amidase activity of monomers could justify the presence of single BuChE subunits in cells as a way to preserve the AAA activity of BuChE, which could be lost by oligomerization.  相似文献   

13.
The role of extracellular elements on the mechanical properties of skeletal muscles is unknown. Merosin is an essential extracellular matrix protein that forms a mechanical junction between the sarcolemma and collagen. Therefore, it is possible that merosin plays a role in force transmission between muscle fibers and collagen. We hypothesized that deficiency in merosin may alter passive muscle stiffness, viscoelastic properties, and contractile muscle force in skeletal muscles. We used the dy/dy mouse, a merosin-deficient mouse model, to examine changes in passive and active muscle mechanics. After mice were anesthetized and the diaphragm or the biceps femoris hindlimb muscle was excised, passive length-tension relationships, stress-relaxation curves, or isometric contractile properties were determined with an in vitro biaxial mechanical testing apparatus. Compared with controls, extensibility was smaller in the muscle fiber direction and the transverse fiber direction of the mutant mice. The relaxed elastic modulus was smaller in merosin-deficient diaphragms compared with controls. Interestingly, maximal muscle tetanic stress was depressed in muscles from the mutant mice during uniaxial loading but not during biaxial loading. However, presence of transverse passive stretch increases maximal contractile stress in both the mutant and normal mice. Our data suggest that merosin contributes to muscle passive stiffness, viscoelasticity, and contractility and that the mechanism by which force is transmitted between adjacent myofibers via merosin possibly in shear.  相似文献   

14.
Congenital muscular dystrophies (CMD) are a group of heterogeneous inherited autosomal recessive disorders characterized by muscular weakness, hypotonia and contractures. The Merosin Negative CMD (MNCMD) is considered to be the most severe form and is usually associated with white matter abnormalities as seen with brain imaging. Merosin is also expressed in the nervous system and its deficiency could affect its development. This article describes the clinical picture, muscle biopsy findings and neuroimaging abnormalities of eight Egyptian Pediatric patients with the clinical presentation of merosin negative congenital muscular dystrophy. The leading clinical presentation in almost all patients was severe hypotonia, muscular weakness and failure to achieve motor developmental milestones, only Case 2 walked at 2 years of age. Mentality was normal in most patients with exception of Case 2 in whom scholastic achievement was poor and was associated with behavior abnormality. Serum Creatine kinase ranged from moderate to severe elevation, 536–3563 U/L, Electromyography demonstrated a myopathic pattern in all patients. Brain MRI showed extensive demyelination of the cerebral white matter in 6/8 patients with extension to cerebellar demyelination in Case 5. 5/8 patients underwent muscle biopsy for which immunofluorescence staining for merosin demonstrated complete deficiency of laminin α2 in Case 5 & partial deficiency of laminin α2 in Case 2.This report demonstrates the utility of Immunofluorescence staining as a guide to confirm the diagnosis of MDCMD especially when molecular diagnosis is not available.  相似文献   

15.
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders presenting in infancy with muscle weakness, contractures, and dystrophic changes on skeletal-muscle biopsy. Structural brain defects, with or without mental retardation, are additional features of several CMD syndromes. Approximately 40% of patients with CMD have a primary deficiency (MDC1A) of the laminin alpha2 chain of merosin (laminin-2) due to mutations in the LAMA2 gene. In addition, a secondary deficiency of laminin alpha2 is apparent in some CMD syndromes, including MDC1B, which is mapped to chromosome 1q42, and both muscle-eye-brain disease (MEB) and Fukuyama CMD (FCMD), two forms with severe brain involvement. The FCMD gene encodes a protein of unknown function, fukutin, though sequence analysis predicts it to be a phosphoryl-ligand transferase. Here we identify the gene for a new member of the fukutin protein family (fukutin related protein [FKRP]), mapping to human chromosome 19q13.3. We report the genomic organization of the FKRP gene and its pattern of tissue expression. Mutations in the FKRP gene have been identified in seven families with CMD characterized by disease onset in the first weeks of life and a severe phenotype with inability to walk, muscle hypertrophy, marked elevation of serum creatine kinase, and normal brain structure and function. Affected individuals had a secondary deficiency of laminin alpha2 expression. In addition, they had both a marked decrease in immunostaining of muscle alpha-dystroglycan and a reduction in its molecular weight on western blot analysis. We suggest these abnormalities of alpha-dystroglycan are caused by its defective glycosylation and are integral to the pathology seen in MDC1C.  相似文献   

16.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

17.
The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity were reinforced as important determinants of inhibition activity.  相似文献   

18.
We report an analysis of the solubility and hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. We distinguish globular nonamphiphilic forms (Gna) from globular amphiphilic forms (Ga). The Ga forms bind micelles of detergent, as indicated by the following properties. They are converted by mild proteolysis into nonamphiphilic derivatives. Their Stokes radius in the presence of Triton X-100 is approximately 2 nm greater than that of their lytic derivatives. The G2a forms fall in two classes. Class I contains molecules that aggregate in the absence of detergent, when mixed with an AChE-depleted Triton X-100 extract from electric organ. AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which is also detectable in detergent-soluble (DS) extracts of electric lobes and spinal cord. Class II forms never aggregate but only present a slight shift in sedimentation coefficient, in the presence or absence of detergent. This class contains the AChE G2a forms of plasma and of the low-salt-soluble (LSS) fractions from spinal cord and electric lobes. The heart possesses a BuChE G2a form of class II in LSS extracts, as well as a similar G1a form. G4a forms of AChE, which are solubilized only in the presence of detergent and aggregate in the absence of detergent, represent a large proportion of cholinesterase in DS extracts of nerves and spinal cord, together with a smaller component of G4a BuChE. These forms may be converted to nonamphiphilic derivatives by Pronase. Nonaggregating G4a forms exist at low levels in the plasma (BuChE) and in LSS extracts of nerves (BuChE) and spinal cord (AChE).  相似文献   

19.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

20.
We report an electrophoretic analysis of the hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. In charge-shift electrophoresis, the rate of electrophoretic migration of globular amphiphilic forms (Ga) is increased at least twofold when the anionic detergent deoxycholate is added to Triton X-100, whereas that of globular nonamphiphilic forms (Gna) is not modified. The G2a forms of the first class, as defined by their aggregation properties, are converted to nonamphiphilic derivatives by phosphatidylinositol phospholipase C (PI-PLC) and human serum phospholipase D (PLD). AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which also exists in very small quantities in detergent-solubilized extracts of electric lobes and spinal cord. They present different electrophoretic mobilities, so that each of these tissues contains a distinct "electromorph," or two in the case of electric organs. The G2a forms of the second class (AChE in plasma, BuChE in heart), as well as G4a forms of AChE and BuChE, are insensitive to PI-PLC and PLD but may be converted to nonamphiphilic derivatives by Pronase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号