共查询到20条相似文献,搜索用时 15 毫秒
1.
M. O. Ilori O. O. Amund O. Omidiji 《World journal of microbiology & biotechnology》1995,11(5):595-596
An extracellular glucose-forming amylase was produced by Lactobacillus brevis isolated from Kagasok tea. The enzyme was purified 70-fold and had optimal activity at 55°C and pH 6.5. Its K
m value for starch was 0.27 mg ml-1 and its M
r was approx. 75,900 Da. The activity of the enzyme was enhanced by Ca2+, Mg2+, Na+ or K+ and inhibited by EDTA, KCN, citric acid and l-cysteine. 相似文献
2.
Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gels 总被引:2,自引:8,他引:2
下载免费PDF全文

Polyadenylated RNA was isolated from leaves and seeds of a C3 plant (Triticum aestivum L. cv Cheyenne, CI 8885) and from a C4 plant (Zea mays L. cv Golden bantam). Each polyadenylated RNA preparation was translated in vitro with micrococcal nuclease-treated reticulocyte lysate. When the in vitro translation products were probed with antibodies to pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1), two sizes of polypeptide were identified. A 110 kilodalton polypeptide was found in the in vitro translation products of mRNA isolated exclusively from leaves of both wheat and maize. A 94 kilodalton polypeptide, similar to the PPDK polypeptide which can be extracted after in vivo synthesis in maize and wheat leaves and seeds, was found in the in vitro translation products obtained from wheat seeds and maize kernels.
These results indicate that the mRNAs for PPDK polypeptides are organ-specific in both a C4 and a C3 plant. Hague et al. (1983 Nucleic Acids Res 11: 4853-4865) proposed that the larger size polypeptide of the in vitro translation polypeptide from maize leaf RNA contains a `transit sequence' which permits entry into the chloroplasts of a polypeptide synthesized in vivo in maize leaf cell cytoplasm. It appears that in wheat leaves also the transit of synthesized PPDK polypeptide through an intracellular membrane may be required, while such a transit sequence seems not to be required within cells of wheat and maize seeds.
相似文献3.
4.
5.
6.
Xiaolei Li Dan Li Yongguang Yin Kwan-Hwa Park 《Applied microbiology and biotechnology》2010,85(6):1821-1830
A gene (Tpen_1458) encoding a putative alpha amylase from hyperthermophilic archaeon Thermofilum pendens (TfMA) was cloned and expressed in Escherichia coli. The recombinant amylolytic enzyme was purified by Ni-NTA affinity chromatography and its catalytic properties were examined. Purified TfMA was extremely thermostable with a half-life of 60 min at an optimal temperature of 95°C. TfMA activity increased to 136% in the presence of 5 mM CaCl2. Maximal activity was measured toward γ-cyclodextrin with a specific activity of 56 U/mg using copper bicinchoninate method. TfMA catalyzed the ring-opening reaction by cleaving one α-1,4-glycosidic linkage of cyclodextrin to produce corresponding single maltooligosaccharide at the initial time. The final products from cyclodextrins, linear maltooligosaccharides, and starch were glucose and maltose, and TfMA could also degrade pullulan and amylase inhibitor acarbose to panose and acarviosine-glucose, respectively. These results revealed that TfMA is a novel maltogenic amylase. 相似文献
7.
8.
Amylopectin fine structures were studied following limited hydrolysis of gelatinised waxy maize starch by amylases with a different level of inner chain attack (LICA). This was done by size exclusion chromatography as well as by debranching the (partially hydrolysed) amylopectin samples and studying the size distributions of the released chains. α-Amylases from Bacillus amyloliquefaciens and Aspergillus oryzae, with a relatively high LICA, drastically altered amylopectin chain length distribution and reduced the amylopectin molecular size (MS) significantly even at a low to moderate degree of hydrolysis (DH). Porcine pancreatic α-amylase (PPA), with a rather low LICA but a high multiple attack action on amylose, reduced the amylopectin MS much slower. Following hydrolysis by PPA to a DH of 10% and enzymic debranching of the amylopectin residue, several subpopulations of chains consisting of 2-12 glucose units were detected, indicating a multiple attack action on the amylopectin side chains. During the early stages of hydrolysis, the maltogenic Bacillus stearothermophilus α-amylase (BStA) preferentially hydrolysed the exterior chains of amylopectin. However, during the later phases, BStA also hydrolysed inner chains, presumably with a high multiple attack action. The present results clearly show that different enzymes can be used for (limited) conversion of amylopectin into structures differing in molecular weight and chain length distributions. 相似文献
9.
10.
11.
The growth of a thermophilic Clostridium sp. and the production of α-glucosidase, α-amylase and pullulanase were studied under anaerobic conditions using different carbon and nitrogen sources and varying pH values and temperatures. Growth and enzyme activities were highest with soybean meal as the nitrogen source. The optimum concentration was 2.5% [w/v] for the production of α-amylase as well as pullulanase and 2% [w/v] for α-glucosidase. The best carbon source proved to be soluble starch for α-amylase, and pullulanase and maltose for α-glucosidase. Growth and enzyme production reached their optimum at pH 6.5 to 7.0 and 70°C. Under these conditions, the enzyme activities followed exponential growth with maximum yields of α-glucosidase, α-amylase and pullulanase at 28, 36, and 44 h. 相似文献
12.
13.
Substrate-containing gel electrophoresis: sensitive detection of amylolytic, nucleolytic, and proteolytic enzymes 总被引:6,自引:0,他引:6
Electrophoresis of hydrolytic enzymes under nondenaturing conditions on acrylamide gels containing the appropriate high-molecular-weight substrates entrapped on the gel has been explored as a general method for sensitive enzyme resolution and detection. Under electrophoresis conditions of optimal enzyme activity, the enzymes may bind tightly to the fixed substrate and can only migrate in the electrophoretic field as the substrate is hydrolyzed. When the gels after electrophoresis in this “binding mode” are stained with substrate-detecting reagents, clear tracks of enzyme migration are observed, and the length of each track is a function of the amount of enzyme present in that track. Multiple forms of a given enzyme activity have not been and are not likely to be observed under these conditions. Under electrophoresis conditions of minimal (or suboptimal) enzyme activity, the enzymes do not bind to the fixed substrate and their mobility in the electrophoretic field does not appear to be significantly affected by the presence of substrate. After electrophoresis in this “nonbinding mode” the gels are incubated under conditions of optimal enzyme activity to allow substrate hydrolysis to take place before they are stained with substrate-detecting reagents, and active enzymes are detected as clear bands. Multiple forms of a given activity which were resolved during electrophoresis in the nonbinding mode are reflected by the presence of individual bands. The substrate-containing gel electrophoresis technique does not appear to be amenable to precise quantification of enzymes. By comparing the length of the clear tracks or the degree of staining of the activity bands for a range of enzyme concentrations, however, it is possible to establish the smallest amount of enzyme that can unequivocally be detected under a given set of conditions; from such studies we estimate that the sensitivity of detection with the substrate-containing gel electrophoresis technique can be orders of magnitude better than that obtained with other methods. The levels of detection observed in the work presented here were about 50 pg for α-amylase run on starch-containing gels, 1 pg to 1 ng for nucleases run on DNA- or RNA-containing gels, and 100 pg to 10 ng for 11 different pure and crude protease preparations run on gels containing heat-denatured bovine serum albumin. 相似文献
14.
15.
Masakazu Hara Ikuo Takahashi Michiyo Yamori Toru Tanaka Shigeyuki Funada Keitaro Watanabe 《Plant Growth Regulation》2011,64(3):287-291
5-Aminolevulinic acid (ALA) promotes the growth of plants by enhancing their photosynthetic activities, but there is little
information on how ALA influences the metabolism of sugars produced by photosynthesis. Here, we report the effects of ALA
on tissue growth, sugar content, and amylase activity in the radish taproot. 5-Aminolevulinic acid was applied with a foliar
spray (5.3–13,500 μM), and application at concentrations of 53, 530, and 2,700 μM enhanced the fresh weight of the taproot.
Glucose is a major soluble sugar of the radish taproot. 5-Aminolevulinic acid slightly increased the glucose content but did
not influence the fructose, sucrose, or starch contents. Radishes have β-amylase (RsBAMY1), which is expressed in the taproot.
5-Aminolevulinic acid enhanced both the amylase activity and the RsBAMY1 protein accumulation. These results suggest that
ALA may control starch accumulation by increasing the RsBAMY1 expression in the radish taproot. The relationship between taproot
growth and free sugar accumulation by ALA is also discussed. 相似文献
16.
First generation progenies selected from four radish cultivars on the basis of their attractiveness to ovipositing cabbage root fly in the laboratory were compared in the same environment. There were significant differences between and within cultivars in their attractiveness for egg-laying, indicating that genetic variation existed and that selection had effected a heritable change. However, inconsistencies between experiments indicated that other, as yet unquantified, factors were compounded with the heritable component of non-preference resistance. There was no evidence to suggest that seed weight, leaf area, or hypocotyl size affected the attractiveness of the plants. The effects of eliminating any choice between selections was investigated in the laboratory by exposing 4-wk-old ‘high’ and ‘low’ preference selections of cv. Asmer Tip Top to the pest for 6 days. Three times as many eggs were laid on ‘high’ than on ‘low’ preference selections, indicating that the heritable non-preference resistance to cabbage root fly in Asmer Tip Top was maintained when no choice was offered to the flies, an essential requirement for ‘resistant’ cultivars in the field. 相似文献
17.
Summary Cortical microtubule arrays in the radish root hair were analyzed from reconstructions of serial ultra-thin sections in order to test extant hypotheses concerning the role of microtubules in the deposition of oriented microfibrils of cellulose. Passing away from the tip, root hairs exhibit a transition from random to oriented deposition of microfibrils at approximately 25 m. Along the root hair, passing back from the tip, the microtubules: a) increase in number to a plateau at 25 m; b) change their length profiles from approximately 60% less than 1 m long in the hair tip to approximately 40% less than 1 m long at 60 m; c) maintain a constant pattern of angular deviation from the long axis, which is similar to the deviation pattern of the oriented wall fibrils; d) maintain a constant (approximately 70% of tubules) close (within 50 nm) proximity to the plasma membrane (PM); e) maintain a low (approximately 20%) degree of inter-microtubule proximity (i.e., within 50 nm of one another); f) show evidence for some variable long range (>50 nm) association. Fixation with glutaraldehyde in a complete microtubule polymerization medium (MTPM), or pretreatment with cytochalasin B cause an approximate twofold increase in 1. the proportion of long microtubules in the tip region and 2. microtubules within 50 nm of one another. Fixation in incomplete MTPM (without GTP) produces results similar to phosphate buffer controls. Alternative explanations for these results are examined. A new hypothesis accounting for microtubule involvement in oriented microfibril deposition is described. 相似文献
18.
Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. 总被引:15,自引:0,他引:15
T Baba K Kimura K Mizuno H Etoh Y Ishida O Shida Y Arai 《Biochemical and biophysical research communications》1991,181(1):87-94
We have identified cDNA clones encoding branching enzyme-I (BE-I) from a maize kernel cDNA library. The combined nucleotide sequence of the cDNAs indicates that maize BE-I is initially synthesized as a precursor protein with a putative 64-residue transit peptide at the amino terminus, and that the mature enzyme contains 759 amino acid residues with a calculated molecular mass of 86,236 Da. The four regions, which constitute the catalytic site of amylolytic enzymes, are conserved in the sequences of BE-I and bacterial branching enzymes. This result demonstrates that branching enzyme belongs to a family of the amylolytic enzymes. The BE-I gene is highly expressed in the early stages of kernel development, and the level of the message concentration decreases slowly as kernel maturation proceeds. 相似文献
19.
M. M. Nielsen E. S. Seo A. Dilokpimol J. Andersen M. Abou Hachem H. Naested 《Biocatalysis and Biotransformation》2013,31(1-2):59-67
Germinating barley seeds contain multiple forms of α-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The α-amylases are endo-acting and possess a long substrate binding cleft with a characteristic subsite binding energy profile around the catalytic site. Furthermore, several amylolytic enzymes that facilitate attack on the natural substrate, i.e. the endosperm starch granules, have secondary sugar binding sites either situated on the surface of the protein domain or structural unit that contains the catalytic site or belonging to a separate starch binding domain. The role of surface sites in the function of barley α-amylase 1 has been investigated by using mutational analysis in conjunction with carbohydrate binding analyses and crystallography. The ability to bind starch depends on the surface sites and varies for starch granules of different genotypes and botanical origin. The surface sites, moreover, are candidates for being involved in degradation of polysaccharides by a multiple attack mechanism. Future studies of the molecular nature of the multivalent enzyme-substrate interactions will address surface sites in both barley α-amylase 1 and in the related isozyme 2. 相似文献