首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S. Bjar  J. P. Bouch 《Biochimie》1984,66(11-12):693-700
In an attempt to locate gyrase binding sites in a specific region of the chromosome of E. coli, we have reinvestigated gyrase-promoted cleavage of chromosomal DNA by oxolinic acid and sodium dodecyl sulfate. Contrary to a previous report suggesting the presence of one site every 100 kb of DNA (Snyder and Drlica, J. Mol. Biol. 131, 287-302), we found frequencies of one cleavage every 25 or 12 kb depending on the growth medium. A search for cleavage sites by Southern blot hybridization failed to reveal any binding site cleaved at a high frequency. These results suggest that the actual spacing of sites is much closer than that determined from the frequency of cleavage. Measurement of the average size of fragments containing defined DNA sequences indicated that the frequency of sites varies along the chromosome. The region located opposite to oriC carries relatively few sites.  相似文献   

2.
Oxolinic acid forms complexes with gyrase and DNA in such a way that subsequent denaturation of gyrase reveals DNA cleavage. Cleavage sites were mapped in a 10,000 base-pair region of the Escherichia coli chromosome containing the dnaA, dnaN, recF, and gyrB genes. Twenty-four cleavage sites were identified. The sites were cleaved at different frequencies, with the most frequent cleavage occurring within gyrB. Not all sites were equally sensitive to oxolinic acid concentration, some sites exhibited an altered cleavage frequency when the gyrB225 delta topA mutant strain DM800 was compared with wild-type cells, and coumermycin selectively changed the cleavage frequency at a few sites in the mutant strain DM800. These perturbations appear to alter the frequency of cleavage at a site but not the location of the site. The availability of many sites of differing strengths may be an important factor in the ability of gyrase to fine-tune the level of supercoiling or provide local swivels in bacterial DNA.  相似文献   

3.
DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid.   总被引:34,自引:0,他引:34  
Treatments in vivo of Escherichia coli with oxolinic acid, a potent inhibitor of DNA gyrase and DNA synthesis, lead to DNA cleavage when extracted chromosomes are incubated with sodium dodecyl sulfate. This DNA breakage has properties similar to those obtained in vitro with DNA gyrase reaction mixtures designed to assay production of supertwists: it is oxolinic acid-dependent, sodium dodecyl sulfate-activated, and at saturating drug concentrations produces double-strand DNA cleavage with a concommitant tight association of protein and DNA. In addition, identical treatments performed on a nalA mutant strain exhibit no DNA cleavage. Thus the DNA cleavage sites probably correspond to chromosomal DNA gyrase sites. Sedimentation measurements of the DNA cleavage products indicate that there are approximately 45 DNA breaks per chromosome. This value is similar to the number of domains of supercoiling found in isolated Escherichia coli chromosomes, suggesting one gyrase site per domain. At low oxolinic acid concentrations single-strand cleavages predominate after sodium dodecyl sulfate treatment, and the inhibition of DNA synthesis parallels the number of sites that obtain a single-strand scission. Double-strand breaks arise from the accumulation of single-strand cleavages in accordance with a model where each cleavage site contains two independent drug targets, one on each DNA strand. Since the nicking-closing subunit of gyrase is the target of oxolinic acid in vitro, we suggest that each gyrase site contains two nicking-closing subunits, one on each DNA strand, and that DNA synthesis requires both to be functional.  相似文献   

4.
The Escherichia coli chromosome contains about 300 bacterial interspersed mosaic elements (BIMEs). These elements, located at the 3' end of genes, are composed of three types of alternating repetitive extragenic palindromes (REPs). Based on the type of REP they contain and on their ability to interact with the integration host factor (IHF), BIMEs are subdivided into two families: BIME-1 elements contain an IHF binding site flanked by converging Y and Z1 REPs, whereas BIME-2 elements contain a variable number of alternating Y and Z2 REPs without an IHF site. Although some BIMEs have been implicated in the protection of mRNA against 3' exonucleolytic degradation, the main role of elements belonging to both families remains to be elucidated. In this paper, we used oxolinic acid, a drug that reveals potential sites of DNA gyrase action, to demonstrate that DNA gyrase interacts in vivo with BIME-2 elements. The frequency of cleavage varied from one element to another, and the cleavage pattern observed in elements containing several REPs indicated that DNA gyrase cut DNA every two REPs. A single cleavage site has been identified in the Y REP in six out of seven instances, and the nucleotide sequence of a 44 bp fragment containing the scission point displayed conserved residues at six positions. The lack of one of the conserved residues accounted for the absence of cleavage in most of the Z2 REPs. Our results also showed that cleaved REPs were always associated with another REP, suggesting that a pair of diverging REPs constitutes the target of DNA gyrase. DNA gyrase cleavage at repetitive BIME-2 elements may have consequences for DNA topology and genomic rearrangements.  相似文献   

5.
L M Fisher  H A Barot    M E Cullen 《The EMBO journal》1986,5(6):1411-1418
DNA gyrase catalyses DNA supercoiling by making a transient double-stranded DNA break within its 120-150 bp binding site on DNA. Addition of the inhibitor oxolinic acid to the reaction followed by detergent traps a covalent enzyme-DNA intermediate inducing sequence-specific DNA cleavage and revealing potential sites of gyrase action on DNA. We have used site-directed mutagenesis to examine the interaction of Escherichia coli gyrase with its major cleavage site in plasmid pBR322. Point mutations have been identified within a short region encompassing the site of DNA scission that reduce or abolish gyrase cleavage in vitro. Mapping of gyrase cleavage sites in vivo reveals that the pBR322 site has the same structure as seen in vitro and is similarly sensitive to specific point changes. The mutagenesis results demonstrate conclusively that a major determinant for gyrase cleavage resides at the break site itself and agree broadly with consensus sequence studies. The gyrase cleavage sequence alone is not a good substrate, however, and requires one or other arm of flanking DNA for efficient DNA breakage. These results are discussed in relation to the mechanism and structure of the gyrase complex.  相似文献   

6.
A key step in the supercoiling reaction is the DNA gyrase-mediated cleavage and religation step of double-stranded DNA. Footprinting studies suggest that the DNA gyrase binding site is 100-150 bp long and that the DNA is wrapped around the enzyme with the cleavage site located near the center of the fragment. Subunit A inhibitors interrupt this cleavage and resealing cycle and result in cleavage occurring at preferred sites. We have been able to show that even a 30 bp DNA fragment containing a 20 bp preferred cleavage sequence from the pBR322 plasmid was a substrate for the DNA gyrase-mediated cleavage reaction in the presence of inhibitors. This DNA fragment was cleaved, although with reduced efficiency, at the same sites as a 122 bp DNA fragment. A 20 bp DNA fragment was cleaved with low efficiency at one of these sites and a 10 bp DNA fragment was no longer a substrate. We therefore propose that subunit A inhibitors interact with DNA at inhibitor-specific positions, thus determining cleavage sites by forming ternary complexes between DNA, inhibitors and DNA gyrase.  相似文献   

7.
Site-specific cleavage of DNA by E. coli DNA gyrase.   总被引:35,自引:0,他引:35  
A Morrison  N R Cozzarelli 《Cell》1979,17(1):175-184
E. coli DNA gyrase, which catalyzes the supercoiling of DNA, cleaves DNA site-specifically when oxolinic acid and sodium dodecylsulfate are added to the reaction. We studied the structure of the gyrasecleaved DNA because of its implications for the reaction mechanism and biological role of gyrase. Gyrase made a staggered cut, creating DNA termini with a free 3' hydroxyl and a 5' extension that provided a template primer for DNA polymerase. The cleaved DNA was resistant to labeling with T4 polynucleotide kinase even after treatment with proteinase K. Thus the denatured enzyme that remains attached to cleaved DNA is covalently bonded to both 5' terminal extensions. The 5' extensions of many gyrase cleavage fragments from phi X174, SV40 and Col E1 DNA were partially sequenced using repair with E. coli DNA polymerase I. No unique sequence existed within the cohesive ends, but G was the predominant first base incorporated by DNA polymerase I. The cohesive and sequences of four gyrase sites were determined, and they demonstrated a four base 5' extension. The dinucleotide TG, straddling the gyrase cut on one DNA strand, provided the only common bases within a 100 bp region surrounding the cleavage sites. Analysis of other cleavage fragments showed that cutting between a TG doublet is common to most, or all, gyrase cleavages. Other bases common to some of the sequenced sites were clustered nonrandomly around the TG doublet, and may be variable components of the cleavage sequence. This diverse recognition sequence with common elements is a pattern shared with several other specific nucleic acid-protein interactions.  相似文献   

8.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   

9.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

10.
DNA breakage is intimately associated with meiotic recombination in the fission yeast Schizosaccharomyces pombe. Sites of prominent DNA breakage were found approximately 25 to approximately 200 kb apart in the genomic regions surveyed. We examined in detail a 501 kb region of chromosome I and found six sites, or tight clusters of sites, at which approximately 2%-11% of the DNA accumulated breaks in a rad50S mutant. In contrast to the discrete, widely spaced distribution of prominent break sites, recombination in this region was more uniformly distributed (0.7-1.6 cM/10 kb) whether the genetic interval tested contained no, one, or more such sites. We infer that although recombination depends upon DNA breakage, recombination often occurs remote from these sites (tens of kilobases away); we discuss mechanisms by which this may occur.  相似文献   

11.
12.
Summary Illegitimate recombination dependent on DNA gyrase in a cell-free system has previously been described. We have now mapped DNA gyrase cleavage sites in the vicinity of known recombination sites in pBR322. Among five recombination sites examined, three were found to coincide with a DNA gyrase cleavage site. This result suggests that the cleavage of DNA by DNA gyrase has a central role in the recombination process.  相似文献   

13.
14.
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning ~50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active centromere. Although the underlying centromeric DNA structure is variable, the position of the centromere measured in this way is fixed relative to the Yp edge of the array, and has retained the same position for >100 000 years.  相似文献   

15.
The site specificity of bacteriophage T4-induced type II DNA topoisomerase action on double-stranded DNA has been explored by studying the sites where DNA cleavages are induced by the enzyme. Oxolinic acid addition increases the frequency at which phi X174 duplex DNA is cut by the enzyme by about 100-fold, to the point where nearly every topoisomerase molecule causes a double-stranded DNA cleavage event. The effect of oxolinic acid on the enzyme is very similar to its effect on another type II DNA topoisomerase, the Escherichia coli DNA gyrase. A filter-binding method was developed that allows efficient purification of topoisomerase-cleaved DNA fragments by selecting for the covalent attachment of this DNA to the enzyme. Using this method, T4 topoisomerase recognition of mutant cytosine-containing T4 DNA was found to be relatively nonspecific, whereas quite specific recognition sites were observed on native T4 DNA, which contains glucosylated hydroxymethylcytosine residues. The increased specificity of native T4 DNA recognition seems to be due entirely to the glucose modification. In contrast, E. coli DNA gyrase shows a high level of specificity for both the mutant cytosine-containing DNA and native T4 DNA, recognizing about five strong cleavage sites on both substrates. An unexpected feature of DNA recognition by the T4 topoisomerase is that the addition of the cofactor ATP strongly stimulates the topoisomerase-induced cleavage of native T4 DNA, but has only a slight effect on cleavage of cytosine-containing T4 DNA.  相似文献   

16.
The bacteriophage Mu strong gyrase site (SGS) is required for efficient replicative transposition and functions by promoting the synapsis of prophage termini. To look for other sites which could substitute for the SGS in promoting Mu replication, we have replaced the SGS in the middle of the Mu genome with fragments of DNA from various sources. A central fragment from the transposing virus D108 allowed efficient Mu replication and was shown to contain a strong gyrase site. However, neither the strong gyrase site from the plasmid pSC101 nor the major gyrase site from pBR322 could promote efficient Mu replication, even though the pSC101 site is a stronger gyrase site than the Mu SGS as assayed by cleavage in the presence of gyrase and the quinolone enoxacin. To look for SGS-like sites in the Escherichia coli chromosome which might be involved in organizing nucleoid structure, fragments of E. coli chromosomal DNA were substituted for the SGS: first, repeat sequences associated with gyrase binding (bacterial interspersed mosaic elements), and, second, random fragments of the entire chromosome. No fragments were found that could replace the SGS in promoting efficient Mu replication. These results demonstrate that the gyrase sites from the transposing phages possess unusual properties and emphasize the need to determine the basis of these properties.  相似文献   

17.
We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.  相似文献   

18.
We have analysed the DNA cleavage reaction of DNA gyrase using oligonucleotides annealed to a single-stranded M13 derivative containing a preferred gyrase cleavage site. We find that gyrase can cleave duplexes down to approximately 20 bp in size in the presence of the quinolone drugs ciprofloxacin and oxolinic acid. Ciprofloxacin shows a variation in its site specificity with an apparent preference for G bases adjacent to the cleavage sites, whereas oxolinic acid stimulates cleavage predominantly at the previously determined site. With either drug, cleavage will not occur within 6 bases from the end of a DNA duplex or a nick. We suggest that cleavage site specificity with short DNA duplexes is determined by drug-DNA interactions whereas with longer fragments the positioning effect of the DNA wrap around gyrase prescribes the site of cleavage.  相似文献   

19.
A novel method was used to characterize the long range susceptibility of Schizosaccharomyces pombe chromosomal DNA to endogenous endonuclease cleavage. Analyses of pulsed field gel experiments revealed two periodicities in the distribution of endogenous endonuclease hypersensitive sites. Endonuclease cleavage sites occurred, roughly at 30–50 kilobase pairs (kb) intervals under physiological conditions (25 mM KCl). At higher salt concentrations (250 mM KCl or 0.2 M and 0.9 M NaCl), endonuclease hypersensitive sites occurred at 200–300 kb intervals. Endonuclease hypersensitive sites in different chromosomal regions were monitored during different stages of the cell cycle. DNA sequencing around the endonuclease hypersensitive sites revealed the presence of clusters of A+T-rich motifs, autonomously replicating sequences (ARSs) in sequences (a characteristic of the scaffold-associated regions (SARs) and the presence of a CTG trinucleotide at most sites.  相似文献   

20.
Alphoid DNA is a family of tandemly repeated simple sequences found mainly at the centromeres of the chromosomes of many primates. This paper describes the structure of the alphoid DNA at the centromere of the human Y chromosome. We have used pulsedfield gradient gel electrophoresis, cosmid cloning and DNA sequencing to determine the organization of the alphoid DNA on each of the Y chromosomes present in two somatic cell hybrids. In each case there is a single major block of alphoid DNA. This is approximately 470,000 bases (475 kb) long on one chromosome and approximately 575 kb long on the other. Apart from the size difference, the structures of the two blocks and the surrounding sequences are very similar. However, one restriction enzyme, AvaII, detects two clusters of sites within one block but does not cleave the other. The alphoid DNA within each block is organized into tandemly repeating units, most of which are about 5.7 kb long. A few variant units present on one chromosome are about 6.0 kb long. These variants, like the AvaII site variants, are clustered. The 5.7 kb and 6.0 kb units themselves consist of tandemly repeating 170 base-pair subunits. The 6.0 kb unit has two more of these subunits than the 5.7 kb unit. Our results provide a basis for further structural analysis of the human Y chromosome centromeric region, and suggest that long-range structural polymorphisms of tandemly repeated sequence families may be frequent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号