首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic proteolysis has been implicated in diverse neuropathological conditions, including acute/subacute ischemic brain injuries and chronic neurodegeneration such as Alzheimer disease and Parkinson disease. Calcium-dependent proteases, calpains, have been intensively analyzed in relation to these pathological conditions, but in vivo experiments have been hampered by the lack of appropriate experimental systems for a selective regulation of the calpain activity in animals. Here we have generated transgenic (Tg) mice that overexpress human calpastatin, a specific and the only natural inhibitor of calpains. In order to clarify the distinct roles of these cell death-associated cysteine proteases, we dissected neurodegenerative changes in these mice together with Tg mice overexpressing a viral inhibitor of caspases after intrahippocampal injection of kainic acid (KA), an inducer of neuronal excitotoxicity. Immunohistochemical analyses using endo-specific antibodies against calpain- and caspase-cleaved cytoskeletal components revealed that preclusion of KA-induced calpain activation can rescue the hippocampal neurons from disruption of the neuritic cytoskeletons, whereas caspase suppression has no overt effect on the neuritic pathologies. In addition, progressive neuronal loss between the acute and subacute phases of KA-induced injury was largely halted only in human calpastatin Tg mice. The animal models and experimental paradigm employed here unequivocally demonstrate their usefulness for clarifying the distinct contribution of calpain and caspase systems to molecular mechanisms governing neurodegeneration in adult brains, and our results indicate the potentials of specific calpain inhibitors in ameliorating excitotoxic neuronal damages.  相似文献   

2.
In this study, we investigated whether there is a signalling interaction between calpain and caspase-3 during apoptosis in Jurkat T cells by Entamoeba histolytica. When Jurkat cells were co-incubated with E. histolytica, phosphatidylserine externalisation and DNA fragmentation markedly increased compared with results for cells incubated with medium alone. In addition, E. histolytica strongly induced cleavage of caspases-3, -6, -7 and poly(ADP-ribose) polymerase. A rise in intracellular calcium levels and activation of calpain were seen in Jurkat cells after exposure to E. histolytica. Pretreatment of Jurkat cells with calpain inhibitor calpeptin effectively blocked E. histolytica-triggered cleavage of caspase-3 as well as calpain. In contrast, pan-caspase inhibitor did not affect E. histolytica-induced calpain activation. In addition, incubation with E. histolytica resulted in multiple fragmented bands of calpastatin, which is an endogenous inhibitor of calpain, in Jurkat T cells. Moreover, Entamoeba-induced calpastatin degradation was dramatically suppressed by pretreatment with calpeptin, but not by z-VAD-fmk. Entamoeba-induced DNA fragmentation was strongly retarded by z-VAD-fmk, but not calpeptin. Our results suggest that calpain-mediated calpastatin degradation plays a crucial role in regulation of caspase-3 activation during apoptosis of Jurkat T cells by E. histolytica.  相似文献   

3.
The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology. We studied calpain and calpastatin in Tg2576 mice and in their wild type littermates (control mice). We found that in control mice calpastatin level varies among brain regions; it is significantly higher in the cerebellum than in the hippocampus, frontal and temporal cortex, whereas calpain levels are similar in all these regions. In the Tg2576 mice, calpain is activated, calpastatin is diminished, and calpain-dependent proteolysis is observed in brain regions affected in AD and in transgenic mice (especially hippocampus). In contrast, no differences are observed between the Tg2576 and the control mice in the cerebellum, which does not exhibit AD-like pathology. The results are consistent with the notion that a high level of calpastatin in the cerebellum renders the calpain in this brain region less liable to be activated; in the other brain parts, in which calpastatin is low, calpain is more easily activated in the presence of increased Ca(2+), and in turn the activated calpain leads to further diminution in calpastatin (a known calpain substrate). The results indicate that calpastatin is an important factor in the regulation of calpain-induced protein degradation in the brains of the affected mice, and imply a role for calpastatin in attenuating AD pathology. Promoting calpastatin expression may be used to ameliorate some manifestations of AD.  相似文献   

4.
Calcineurin and calpain, a Ca2+/calmodulin-dependent protein phosphatase and a Ca2+-dependent cysteine protease, respectively, mediate neuronal cell death through independent cascades. Here, we report that during neuroexcitotoxicity, calcineurin A (CnA) is directly cleaved by calpain in vitro and in vivo, resulting in the enzyme being converted to an active form. Mass spectrometry identified three cleavage sites in CnA, two of which were constitutively active forms. Overexpression of the cleaved CnA induced caspase activity and neuronal cell death. Calpain inhibitors and membrane-permeable calpastatin peptides not only blocked the cleavage of CnA, but also protected against excitotoxic neuronal cell death in vitro and in vivo. These results indicate that CnA is a crucial target for calpain, and the calpain-mediated activation of CnA triggers excitotoxic neurodegeneration. This study established a molecular link between calpain and calcineurin, thereby demonstrating a new mechanism for proteolytical regulation of calcineurin by calpain in response to certain pathological states.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is characterized by the selective degeneration of motor neurons. The cause for nerve cell demise is not clear but involves activation of the caspase family of cysteine proteases. We have shown that ER stress and caspase-12 activation occur in ALS transgenic mice carrying the mutant copper/zinc superoxide dismutase (SOD1) gene. In these mice, we found that the antiapoptotic proteins, X-linked Inhibitor of Apoptosis Protein (XIAP) and the related protein, MIAP2 were decreased. To study the role of this, we generated double transgenic mice expressing XIAP in ALS spinal cord neurons using the Thy1 promoter. Overexpression of XIAP inhibited caspase-12 cleavage and reduced calpain activity in the ALS mice. XIAP also reduced the breakdown of calpastatin that is an inhibitor of calpain. In the double transgenic mice, life span was increased by about 12%. These data support the view that XIAP has beneficial effects in ALS and extends survival. The neuroprotective effect of XIAP involves inhibition of caspases and the stabilization of the calpastatin/calpain system that is altered in the ALS mice.  相似文献   

6.
The pathogenesis of various acute and chronic neurodegenerative disorders has been linked to excitotoxic processes and excess generation of nitric oxide. We investigated the deleterious effects of calpain activation in nitric oxide-elicited neuronal apoptosis. In this model, nitric oxide triggers apoptosis of murine cerebellar granule cells by an excitotoxic mechanism requiring glutamate exocytosis and receptor-mediated intracellular calcium overload. Here, we found that calcium-dependent cysteine proteases, calpains, were activated early in apoptosis of cerebellar granule cells exposed to nitric oxide. Release of the proapoptogenic factors cytochrome c and apoptosis-inducing factor from mitochondria preceded neuronal death. However, caspases-3 was not activated. We observed that procaspase-9 was cleaved by calpains to proteolytically inactive fragments. Inhibition of calpains by different synthetic calpain inhibitors or by adenovirally mediated expression of the calpastatin inhibitory domain prevented mitochondrial release of cytochrome c and apoptosis-inducing factor, calpain-specific proteolysis and neuronal apoptosis. We conclude that (i) signal transduction pathways exist that prevent the entry of neurons into a caspase-dependent death after mitochondrial release of cytochrome c and (ii) that calpain activation links nitric oxide-triggered excitotoxic events with the execution of caspase-independent apoptosis in neurons.  相似文献   

7.
Caspase-dependent activation of calpain during drug-induced apoptosis   总被引:16,自引:0,他引:16  
We have previously demonstrated that calpain is responsible for the cleavage of Bax, a proapoptotic protein, during drug-induced apoptosis of HL-60 cells (Wood, D. E., Thomas, A., Devi, L. A., Berman, Y., Beavis, R. C., Reed, J. C., and Newcomb, E. W. (1998) Oncogene 17, 1069-1078). Here we show the sequential activation of caspases and calpain during drug-induced apoptosis of HL-60 cells. Time course experiments using the topoisomerase I inhibitor 9-amino-20(S)-camptothecin revealed that cleavage of caspase-3 substrates poly(ADP-ribose) polymerase (PARP) and the retinoblastoma protein as well as DNA fragmentation occurred several hours before calpain activation and Bax cleavage. Pretreatment with the calpain inhibitor calpeptin blocked calpain activation and Bax cleavage but did not inhibit PARP cleavage, DNA fragmentation, or 9-amino-20(S)-camptothecin-induced morphological changes and cell death. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) inhibited PARP cleavage, DNA fragmentation, calpain activation, and Bax cleavage and increased cell survival by 40%. Interestingly, Z-VAD-fmk-treated cells died in a caspase- and calpain-independent manner that appeared morphologically distinct from apoptosis. Our results suggest that excessive or uncontrolled calpain activity may play a role downstream of and distinct from caspases in the degradation phase of apoptosis.  相似文献   

8.
Cross-talk between calpain and caspase proteolytic systems has complicated efforts to determine their distinct roles in apoptotic cell death. This study examined the effect of overexpressing calpastatin, the specific endogenous calpain inhibitor, on the activity of the two proteolytic systems following an apoptotic stimulus. Human SH-SY5Y neuroblastoma cells were stably transfected with full-length human calpastatin cDNA resulting in 20-fold overexpression based on Western blot and 5-fold greater calpain inhibitory activity in cell extracts. Wild type and calpastatin overexpressing (CST1) cells were neuronally differentiated and apoptosis-induced with staurosporine (0.1-1.0 microm). Calpastatin overexpression decreased calpain activation, increased caspase-3-like activity, and accelerated the appearance of apoptotic nuclear morphology. Following 0.1-0.2 microm staurosporine, plasma membrane integrity based on calcein-acetoxymethyl fluorescence was significantly greater at 24 h in differentiated CST1 compared with differentiated wild type cells. However, this protective effect was lost at higher staurosporine doses (0.5-1.0 microm), which resulted in pronounced caspase-mediated degradation of the overexpressed calpastatin. These results suggest a dual role for calpains during neuronal apoptosis. In the early execution phase, calpain down-regulates caspase-3-like activity and slows progression of apoptotic nuclear morphology. Subsequent calpain activity, facilitated by caspase-mediated degradation of calpastatin, contributes to plasma membrane disruption and secondary necrosis.  相似文献   

9.
Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N -methyl- N '-nitro- N -nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.  相似文献   

10.
Degradation of transcription factors, c-Jun and c-Fos, by calpain   总被引:3,自引:0,他引:3  
S Hirai  H Kawasaki  M Yaniv  K Suzuki 《FEBS letters》1991,287(1-2):57-61
  相似文献   

11.
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing–remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.  相似文献   

12.
Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.  相似文献   

13.
Inhibition of calpain blocks platelet secretion, aggregation, and spreading   总被引:8,自引:0,他引:8  
Previous studies have indicated that the Ca(2+)-dependent protease, calpain, is activated in platelets within 30-60 s of thrombin stimulation, but specific roles of calpain in platelets remain to be identified. To directly test the functions of calpain during platelet activation, a novel strategy was developed for introducing calpain's specific biological inhibitor, calpastatin, into platelets prior to activation. This method involves treatment of platelets with a fusion peptide, calpastat, consisting of the cell-penetrating signal sequence from Kaposi's fibroblast growth factor connected to a calpain-inhibiting consensus sequence derived from calpastatin. Calpastat specifically inhibits thrombin peptide (SFLLR)-induced alpha-granule secretion (IC(50) = 20 microM) during the first 30 s of activation, thrombin-induced platelet aggregation (IC(50) = 50 microM), and platelet spreading on glass surfaces (IC(50) = 34 microM). Calpastat-Ala, a mutant peptide in which alanine is substituted at conserved calpastatin residues, lacks calpain inhibitory activity and fails to inhibit secretion, aggregation, or spreading. The peptidyl calpain inhibitors calpeptin, MDL 28,170 (MDL) and E64d also inhibit secretion, aggregation and spreading, but require 3-10-fold higher concentrations than calpastat for biological activity. Together, these findings demonstrate that calpain regulates platelet secretion, aggregation, and spreading and indicate that calpain plays an earlier role in platelet activation following thrombin receptor stimulation than had been previously detected.  相似文献   

14.
In a model of cerebral hypoxia-ischemia in the immature rat, widespread brain injury is produced in the ipsilateral hemisphere, whereas the contralateral hemisphere is left undamaged. Previously, we found that calpains were equally translocated to cellular membranes (a prerequisite for protease activation) in the ipsilateral and contralateral hemispheres. However, activation, as judged by degradation of fodrin, occurred only in the ipsilateral hemisphere. In this study we demonstrate that calpastatin, the specific, endogenous inhibitor protein to calpain, is up-regulated in response to hypoxia and may be responsible for the halted calpain activation in the contralateral hemisphere. Concomitantly, extensive degradation of calpastatin occurred in the ipsilateral hemisphere, as demonstrated by the appearance of a membrane-bound 50-kDa calpastatin breakdown product. The calpastatin breakdown product accumulated in the synaptosomal fraction, displaying a peak 24 h post-insult, but was not detectable in the cytosolic fraction. The degradation of calpastatin was blocked by administration of CX295, a calpain inhibitor, indicating that calpastatin acts as a suicide substrate to calpain during hypoxia-ischemia. In summary, calpastatin was up-regulated in areas that remain undamaged and degraded in areas where excessive activation of calpains and infarction occurs.  相似文献   

15.
Persistent dysregulation in Ca2+ homeostasis is a pervasive pathogenic mechanism in most neurodegenerative diseases, and accordingly, calpain activation has been implicated in neuronal cells dysfunction and death. In this study we examined the intracellular functional state of the calpain-calpastatin system in −G93A(+) SOD1 transgenic mice to establish if and how uncontrolled activation of calpain can be prevented in vivo during the course of prolonged [Ca2+]i elevation. The presented data indicate that 1) calpain activation is more extensive in motor cortex, in lumbar, and sacral spinal cord segments compared with the lower or almost undetectable activation of the protease in other brain areas, 2) direct measurements of the variations of Ca2+ levels established that the degree of the protease activation is correlated to the extent of elevation of [Ca2+]i, 3) intracellular activation of calpain is always associated with diffusion of calpastatin from perinuclear aggregated forms into the cytosol and the formation of a calpain-calpastatin complex, and 4) a conservative fragmentation of calpastatin is accompanied by its increased expression and inhibitory capacity in conditions of prolonged increase in [Ca2+]i. Thus, calpastatin diffusion and formation of the calpain-calpastatin complex together with an increased synthesis of the inhibitor protein represent a cellular defense response to conditions of prolonged dysregulation in intracellular Ca2+ homeostasis. Altogether these findings provide a new understanding of the in vivo molecular mechanisms governing calpain activation that can be extended to many neurodegenerative diseases, potentially useful for the development of new therapeutic approaches.  相似文献   

16.
Conformational changes in the calpain molecule following interaction with natural ligands can be monitored by the binding of a specific monoclonal antibody directed against the catalytic domain of the protease. None of these conformational states showed catalytic activity and probably represent intermediate forms preceding the active enzyme state. In its native inactive conformation, calpain shows very low affinity for this monoclonal antibody, whereas, on binding to the ligands Ca(2+), substrate or calpastatin, the affinity increases up to 10-fold, with calpastatin being the most effective. This methodology was also used to show that calpain undergoes similar conformational changes in intact cells exposed to stimuli that induce either a rise in intracellular [Ca(2+)] or extensive diffusion of calpastatin into the cytosol without affecting Ca(2+) homeostasis. The fact that the changes in the calpain state are also observed under the latter conditions indicates that calpastatin availability in the cytosol is the triggering event for calpain-calpastatin interaction, which is presumably involved in the control of the extent of calpain activation through translocation to specific sites of action.  相似文献   

17.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

18.
Mycoplasmas are frequent contaminants of cell cultures. Contamination leads to altered synthetic and metabolic pathways. We have found that contamination of neuroblastoma SH-SY5Y cells by a strain of Mycoplasma hyorhinis derived from SH-SY5Y cell culture (NDMh) leads to increased levels of calpastatin (the endogenous inhibitor of the Ca(2+)-dependent protease, calpain) in NDMh-infected cells. We have now examined effects of amyloid-β-peptide (Aβ) (central to the pathogenesis of Alzheimer's disease) on uncontaminated (clean) and NDMh-infected SH-SY5Y cells. Aβ was toxic to clean cells, resulting in necrotic cell damage. Aβ treatment led to activation of calpain and enhanced proteolysis, cell swelling, cell membrane permeability to propidium iodide (PI) (without nuclear apoptotic changes), and diminished mitochondrial enzyme activity (XTT reduction). Aβ-toxicity was attenuated in the high calpastatin-containing NDMh-infected cells, as shown by inhibition of calpain activation and activity, no membrane permeability, normal cell morphology, and maintenance of mitochondrial enzyme activity (similar to attenuation of Aβ-toxicity in non-infected cells overexpressing calpastatin following calpastatin-plasmid introduction into the cells). By contrast, staurosporine affected both clean and infected cells, causing apoptotic damage (cell shrinkage, nuclear apoptotic alterations, caspase-3 activation and caspase-promoted proteolysis, without PI permeability, and without effect on XTT reduction). The results indicate that mycoplasma protects the cells against certain types of insults involving calpain. The ratio of calpastatin to calpain is an important factor in the control of calpain activity. Exogenous pharmacological means, including calpastatin-based inhibitors, have been considered for therapy of various diseases in which calpain is implicated. Mycoplasmas provide the first naturally occurring biological system that upregulates the endogenous calpain inhibitor, and thus may be of interest in devising treatments for some disorders, such as neurodegenerative diseases.  相似文献   

19.
c-Jun is induced in many neuronal death paradigms. A critical step in c-Jun regulation involves phosphorylation of Ser63/Ser73 located in the NH2-terminal transactivation domain. To determine the importance of this phosphorylation for neuronal apoptosis, we analyzed the sympathetic neurons of mice carrying a mutant c-Jun gene that lacks Ser63/Ser73 phosphorylation sites (jun aa). Trophic factor-deprivation or DNA damage-induced death was significantly delayed in jun aa/aa neurons. Neuronal c-Jun induction was only partially inhibited, demonstrating that phosphorylation of Ser63/73 is not required for c-Jun activation. The inductions of proapoptotic BH3-only proteins, Bim and PUMA/Bbc3, were delayed during neuronal apoptosis in mutant neurons. These results demonstrate that NH2-terminal c-Jun phosphorylation is important, but not necessary, for the induction of proapoptotic genes and neuronal apoptosis. Thus, additional JNK substrates may be critical for neuronal death. As potential mediators, we identified additional nuclear MLK/JNK substrates, including Nup214 subunit of the nuclear pore complex.  相似文献   

20.
Calpain, a calcium-dependent cytosolic cysteine protease, is implicated in a multitude of cellular functions but also plays a role in cell death. Recently, we have shown that two ubiquitous isoforms, termed micro-calpain and m-calpain, are expressed in rat pancreatic acinar cells and that calcium ionophore-induced calpain activation leads to acinar cell injury. On the basis of these observations, we have now investigated the role of both calpain forms and the endogenous calpain inhibitor calpastatin in acute pancreatitis. After treatment of rats either without or with calpain inhibitor Z-Val-Phe methyl ester (ZVP; 60 mg/kg i.p.), pancreatitis was induced by cerulein injections (10 microg/kg i.p.; 5 times at hourly intervals). Calpain activation and calpastatin expression in the pancreatic tissue were studied by Western blot analysis. Pancreatic injury was assessed by plasma amylase activity, pancreatic wet/dry weight ratio (edema), histological and electron-microscopic analyses, as well as fluorescence labeling of actin filaments. Cerulein caused an activation of both micro-calpain and m-calpain, accompanied by degradation of calpastatin. Prophylactic administration of ZVP reduced the cerulein-induced calpain activation but had no effect on calpastatin alterations. In correlation to the diminished calpain activity, the severity of pancreatitis decreased as indicated by a decline in amylase activity (P < 0.01), pancreatic edema formation (P < 0.05), histological score for eight parameters (P < 0.01), and actin filament alterations. Our findings support the hypothesis that dysregulation of the calpain-calpastatin system may play a role in the onset of acute pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号