首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

2.
In this study we have cloned a novel member of mouse protein phosphatase 2C family, PP2Czeta, which is composed of 507 amino acids and has a unique N-terminal region. The overall similarity of the amino acid sequence between PP2Czeta and PP2Calpha was 22%. On Northern blot analysis PP2Czeta was found to be expressed specifically in the testicular germ cells. PP2Czeta expressed in COS7 cells was able to associate with ubiquitin conjugating enzyme 9 (UBC9) and the association was enhanced by co-expression of small ubiquitin-related modifier-1 (SUMO-1), suggesting that PP2Czeta exhibits its specific role through its SUMO-induced recruitment to UBC9.  相似文献   

3.
The Saccharomyces cerevisiae TPD1 gene has been implicated in tRNA splicing because a tpd1-1 mutant strain accumulates unspliced precursor tRNAs at high temperatures (W. H. van Zyl, N. Wills, and J. R. Broach, Genetics 123:55-68, 1989). The wild-type TPD1 gene was cloned by complementation of the tpd1-1 mutation and shown to encode a protein with substantial homology to protein phosphatase 2C (PP2C) of higher eukaryotes. Expression of Tpd1p in Escherichia coli results in PP2C-like activity. Strains deleted for the TPD1 gene exhibit multiple phenotypes: temperature-sensitive growth, accumulation of unspliced precursor tRNAs, sporulation defects, and failure of cell separation during mitotic growth. On the basis of the presence of these observable phenotypes and the fact that Tpd1p accounts for a small percentage of the observed PP2C activity, we argue that Tpd1p is a unique member of the PP2C family.  相似文献   

4.
The protein phosphatase 2C (PP2C) family represents one of the four major protein Ser/Thr phosphatase activities in mammalian cells and contains at least 13 distinct gene products. Although PP2C family members regulate a variety of cellular functions, mechanisms of regulation of their activities are largely unknown. Here, we show that PP2Czeta, a PP2C family member that is enriched in testicular germ cells, is phosphorylated by c-Jun NH 2-terminal kinase (JNK) but not by p38 in vitro. Mass spectrometry and mutational analyses demonstrated that phosphorylation occurs at Ser (92), Thr (202), and Thr (205) of PP2Czeta. Phosphorylation of these Ser and Thr residues of PP2Czeta ectopically expressed in 293 cells was enhanced by osmotic stress and was attenuated by a JNK inhibitor but not by p38 or MEK inhibitors. Phosphorylation of PP2Czeta by TAK1-activated JNK repressed its phosphatase activity in cells, and alanine mutation at Ser (92) but not at Thr (202) or Thr (205) suppressed this inhibition. Taken together, these results suggest that specific phosphorylation of PP2Czeta at Ser (92) by stress-activated JNK attenuates its phosphatase activity in cells.  相似文献   

5.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

6.
The protein serine/threonine phosphatase (PP) type 2A family consists of three members: PP2A, PP4, and PP6. Specific rabbit and sheep antibodies corresponding to each catalytic subunit, as well as a rabbit antibody recognizing all three subunits, were utilized to examine the expression of these enzymes in select rat tissue extracts. PP2A, PP4, and PP6 catalytic subunits (PP2A(C), PP4(C), and PP6(C), respectively) were detected in all rat tissue extracts examined and exhibited some differences in their levels of expression. The expression of alpha4, an interacting protein for PP2A family members that may function downstream of the target of rapamycin (Tor), was also examined using specific alpha4 sheep antibodies. Like the phosphatase catalytic subunits, alpha4 was ubiquitously expressed with particularly high levels in the brain and thymus. All three PP2A family members, but not alpha4, bound to the phosphatase affinity resin microcystin-Sepharose. The phosphatase catalytic subunits were purified to apparent homogeneity (PP2A(C) and PP4(C)) or near homogeneity (PP6(C)) from bovine testes soluble extracts following ethanol precipitation and protein extraction. In contrast to PP2A(C), PP4(C) and PP6(C) exhibited relatively low phosphatase activity towards several substrates. Purified PP2A(C) and native PP2A in cellular extracts bound to GST-alpha4, and co-immunoprecipitated with endogenous alpha4 and ectopically expressed myc-tagged alpha4. The interaction of PP2A(C) with alpha4 was unaffected by rapamycin treatment of mammalian cells; however, protein serine/threonine phosphatase inhibitors such as okadaic acid and microcystin-LR disrupted the alpha4/PP2A complex. Together, these findings increase our understanding of the biochemistry of alpha4/phosphatase complexes and suggest that the alpha4 binding site within PP2A may include the phosphatase catalytic domain.  相似文献   

7.
A thorough sequence analysis of the various members of the eukaryotic protein serine/threonine phosphatase 2C (PP2C) family revealed the conservation of 11 motifs. These motifs could be identified in numerous other sequences, including fungal adenylate cyclases that are predicted to contain a functionally active PP2C domain, and a family of prokaryotic serine/threonine phosphatases including SpoIIE. Phylogenetic analysis of all the proteins indicates a widespread sequence family for which a considerable number of isoenzymes can be inferred.  相似文献   

8.
9.
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.  相似文献   

10.
Protein phosphorylation and dephosphorylation are major regulatory mechanisms that cells use to transmit signals from their extracellular environment to the interior. Up to now, two structurally distinct groups of ser/thr phos-phatases are known of: the PP1/PP2A family and the PP2C family. Here, we focus our efforts to reveal the functions of the PP2C family in rice. It has been known that PP2C has diverse functions related to developments and stress responses. We have obtained a rice EST clone, OsPP2C4, that contained the highly conserved PP2C motifs. RNA gel-blot analysis showed that OsPP2C4 was expressed highly in panicles, while it was expressed weakly in seedling leaves, seedling roots, and mature leaves. Assay of the PP2C enzyme activity with a substrate, para-nitrophenyl phosphate, showed that OsPP2C4 encoded an active PP2C. Transgenic plants expressing the antisense construct of this clone were generated to study the functional roles of the PP2C clone in rice.  相似文献   

11.
12.
Reversible phosphorylation modulates a cells’ susceptibility to apoptosis. The phosphorylation status of BAD, a member of the Bcl-2 protein family, is an important checkpoint governing life-or-death decisions: Phosphorylation of serine residues 112, 136 and 155 on BAD prevents apoptosis. Here we report that BAD is a substrate for PP2C. Ser155 is involved in heterodimerization with Bcl-XL. We could demonstrate that PP1, PP2A and PP2C act on this site in vitro. However, only PP2C gives priority to P-Ser155 compared to P-Ser112 and P-Ser136 on BAD. The results indicate that PP2C is an additional factor triggering the pro-apoptotic function of BAD.  相似文献   

13.
Protein phosphatase 2A (PP2A) is the major serine-threonine phosphatase that regulates a number of cell signaling pathways. PP2A activity is controlled partially through protein degradation; however, the underlying mechanism is not fully understood. Here we show that PP2A/C, a catalytic subunit of PP2A, is degraded by the Cullin3 (Cul3) ligase-mediated ubiquitin-proteasome pathway. In response to death receptor signaling by tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), PP2A/C, caspase-8 and Cul3, a subunit of the cullin family of E3 ligases, are recruited into the death-inducing signaling complex (DISC) where the Cul3 ligase targets PP2A/C for ubiquitination and subsequent degradation. Functionally, knockdown of PP2A/C expression by siRNA or pharmacological inhibition of PP2A activity increases TRAIL-induced apoptosis. In cancer cells that have developed acquired TRAIL resistance, PP2A phosphatase activity is increased, and PP2A/C protein is resistant to TRAIL-induced degradation. Thus, this work identifies a new mechanism by which PP2A/C is regulated by Cul3 ligase-mediated degradation in response to death receptor signaling and suggests that inhibition of PP2A/C degradation may contribute to resistance of cancer cells to death receptor-induced apoptosis.  相似文献   

14.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

15.
The activity of vacuolar H+‐ATPase (V‐ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5‐HT). 5‐HT induces, via protein kinase A, the phosphorylation of V‐ATPase subunit C and the assembly of V‐ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V‐ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK‐506) do not prevent V‐ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA‐AM leads to the activation of proton pumping in the absence of 5‐HT, prolongs the 5‐HT‐induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V‐ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Pyruvate, orthophosphate dikinase (PPDK) is a ubiquitous, low-abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual bifunctional protein kinase (PK)/protein phosphatase (PP). In this paper we document the molecular cloning and functional analysis of the two unique C3 RPs in Arabidopsis thaliana . The first of these, AtRP1 , encodes a typical chloroplast-targeted, bifunctional C4-like RP. The second RP gene, AtRP2 , encodes a monofunctional polypeptide that possesses in vitro RP-like PK activity but lacks PP activity, and is localized in the cytosol. Notably, the deduced primary structures of these two highly homologous polypeptides are devoid of any canonical subdomain structure that unifies all known eukaryotic and prokaryotic Ser/Thr PKs into one of three superfamilies, despite the direct demonstration that AtRP1 is functionally a member of this group. Instead, these C3 RPs and the related C4 plant homologues encode a conserved, centrally positioned, approximately 260-residue sequence currently described as the ' d omain of u nknown f unction 299' (DUF 299). We propose that vascular plant RPs form a unique protein kinase family now designated as the DUF 299 gene family.  相似文献   

17.
Bax is a major proapoptotic member of the Bcl2 family that is required for apoptotic cell death. We have recently discovered that Bax phosphorylation at serine 184 induced by nicotine through activation of protein kinase AKT abolishes its proapoptotic function in human lung cancer cells. Here we found that either treatment of cells with the protein phosphatase 2A (PP2A) inhibitor okadaic acid or specific disruption of PP2A activity by expression of SV40 small tumor antigen enhanced Bax phosphorylation, whereas C(2)-ceramide, a potent PP2A activator, reduced nicotine-induced Bax phosphorylation, suggesting that PP2A may function as a physiological Bax phosphatase. PP2A co-localized and interacted with Bax. Purified, active PP2A directly dephosphorylated Bax in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppressed nicotine-stimulated Bax phosphorylation in association with increased apoptotic cell death. By contrast, depletion of PP2A/C by RNA interference enhanced Bax phosphorylation and prolonged cell survival. Mechanistically C(2)-ceramide-induced Bax dephosphorylation caused a conformational change by exposure of the 6A7 epitope (amino acids 13-19) that is normally hidden at its N terminus that promoted the insertion of Bax into mitochondrial membranes and formation of Bax oligomers leading to cytochrome c release and apoptosis. In addition, PP2A directly disrupted the Bcl2/Bax association to liberate Bax from the heterodimer complex. Thus, PP2A may function as a physiological Bax regulatory phosphatase that not only dephosphorylates Bax but also activates its proapoptotic function.  相似文献   

18.
PP2C是一类丝氨酸/苏氨酸残基蛋白磷酸酶,在高等植物ABA信号途径中起着重要的作用。为阐明巴西橡胶树中PP2C基因的结构与功能,本研究通过生物信息学方法,从橡胶树转录组数据库中鉴定并获得6个PP2C家族基因,均含有PP2CD、F1和F2亚族。通过qRT-PCR技术对6个PP2C家族基因进行了干旱处理下的差异表达分析,发现6个基因都不同程度上响应橡胶树干旱胁迫。本研究为探究PP2C基因在橡胶树抗干旱反应机制提供了理论依据。  相似文献   

19.
Kinetic analysis of human serine/threonine protein phosphatase 2Calpha.   总被引:1,自引:0,他引:1  
The PPM family of Ser/Thr protein phosphatases have recently been shown to down-regulate the stress response pathways in eukaryotes. Within the stress pathway, key signaling kinases, which are activated by protein phosphorylation, have been proposed as the in vivo substrates of PP2C, the prototypical member of the PPM family. Although it is known that these phosphatases require metal cations for activity, the molecular details of these important reactions have not been established. Therefore, here we report a detailed biochemical study to elucidate the kinetic and chemical mechanism of PP2Calpha. Steady-state kinetic and product inhibition studies revealed that PP2Calpha employs an ordered sequential mechanism, where the metal cations bind before phosphorylated substrate, and phosphate is the last product to be released. The metal-dependent activity of PP2C (as reflected in kcat and kcat/Km), indicated that Fe2+ was 1000-fold better than Mg2+. The pH rate profiles revealed two ionizations critical for catalytic activity. An enzyme ionization with a pKa value of 7 must be unprotonated for catalysis, and an enzyme ionization with a pKa of 9 must be protonated for substrate binding. Br?nsted analysis of substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7. 0, but not at pH 8.5 where a common step independent of the nature of the substrate and alcohol product limits turnover (kcat). Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" of product formation, consistent with phosphate release being the slow catalytic step at pH 8.5. Dephosphorylation of synthetic phosphopeptides corresponding to several protein kinases revealed that PP2C displays a strong preference for diphosphorylated peptides in which the phosphorylated residues are in close proximity.  相似文献   

20.
The B″/PR72 family of protein phosphatase 2A (PP2A) is an important PP2A family involved in diverse cellular processes, and uniquely regulated by calcium binding to the regulatory subunit. The PR70 subunit in this family interacts with cell division control 6 (Cdc6), a cell cycle regulator important for control of DNA replication. Here, we report crystal structures of the isolated PR72 and the trimeric PR70 holoenzyme at a resolution of 2.1 and 2.4 Å, respectively, and in vitro characterization of Cdc6 dephosphorylation. The holoenzyme structure reveals that one of the PR70 calcium-binding motifs directly contacts the scaffold subunit, resulting in the most compact scaffold subunit conformation among all PP2A holoenzymes. PR70 also binds distinctively to the catalytic subunit near the active site, which is required for PR70 to enhance phosphatase activity toward Cdc6. Our studies provide a structural basis for unique regulation of B″/PR72 holoenzymes by calcium ions, and suggest the mechanisms for precise control of substrate specificity among PP2A holoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号