首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phylogeographic analyses have revealed the importance of Pleistocene vicariance events in shaping the distribution of genetic diversity in freshwater fishes. However, few studies have examined the patterning of variation in freshwater organisms with differing dispersal syndromes and life histories. The present investigation addresses this gap, examining the phylogeography of Sida crystallina, a species whose production of diapausing eggs capable of passive dispersal was thought to constrain its regional genetic differentiation. By contrast, the present analysis has revealed deep allozyme and cytochrome oxidase I mitochondrial DNA divergence between populations from North America and Europe. Moreover, North American populations are separated into four allopatric assemblages, whose distribution suggests their derivation from different Pleistocene refugia. These lineages show higher haplotype diversity and deeper sequence divergence than those of any fish from temperate North America. Its distinctive life history traits have evidently sheltered lineages of Sida from extinction, contributing to a remarkably comprehensive and high resolution phylogeographic record.  相似文献   

2.
Tree-feeding insects that are widespread in north temperate regions are excellent models for studying how past glaciations have impacted differentiation and speciation. We used mitochondrial DNA (mtDNA) sequences and allele frequencies at nine microsatellite loci to examine genetic population structure across the current range of the spruce beetle (Dendroctonus rufipennis), an economically important insect in North America. Two major haplotype groups occur across northern North America, from Newfoundland to Alaska, on white spruce (Picea glauca), and a third distinctive haplotype group occurs throughout the Rocky Mountains on Engelmann spruce (Picea engelmannii). The two mtDNA lineages found in northern populations are 3-4% divergent from each other and from the lineages found in the Rocky Mountains. Analyses of microsatellite data also suggest the existence of major population groupings associated with different geographical regions. In the Pacific Northwest, concordant contact zones for genetically distinct populations of spruce beetles and their principal hosts appear to reflect recent secondary contact. Although we could detect no evidence of historical mtDNA gene flow between allopatric population groups, patterns of variation in the Pacific Northwest suggest recent hybridization and introgression. Together with the pollen record for spruce, they also suggest that beetles have spread from at least three glacial refugia. A minimum estimate of divergence time between the Rocky Mountain and northern populations was 1.7 Myr (million years), presumably reflecting the combined effects of isolation during multiple glacial cycles.  相似文献   

3.
Despite increasing information about postglacial recolonization of European freshwater systems, very little is known about pre-Pleistocene history. We used data on the recent distribution and phylogenetic relationships of stone loach mitochondrial lineages to reconstruct the initial colonization pattern of the Danube river system, one of the most important refuges for European freshwater ichthyofauna. Fine-scale phylogeography of the Danubian populations revealed five highly divergent lineages of pre-Pleistocene age and suggested the multiple origin of the Danubian stone loach. The mean sequence divergence among lineages extended from 7.0% to 13.4%, which is the highest intraspecific divergence observed so far within this river system. Based on the phylogeographical patterns, we propose the following hypothesis to relate the evolution and dispersal of the studied species with the evolution of the Danube river system and the Carpathian Mountains: (i) during the warmer period in the Miocene, the areas surrounding the uplifting Alps and Carpathians served as mountainous refuges for cold-water adapted fish and promoted the diversification of its populations, and (ii) from these refuges, colonization of the emerging Danube river system may have taken place following the retreat of the Central Paratethys. Co-existence of highly divergent mtDNA lineages in a single river system shows that range shifts in response to climatic changes during the Quaternary did not cause extensive genetic homogenization in the stone loach populations. However, the wide distribution of some mtDNA lineages indicates that the Pleistocene glaciations promoted the dispersal and mixing of populations through the lowlands.  相似文献   

4.
K Inoue  E M Monroe  C L Elderkin  D J Berg 《Heredity》2014,112(3):282-290
Freshwater organisms of North America have had their contemporary genetic structure shaped by vicariant events, especially Pleistocene glaciations. Life history traits promoting dispersal and gene flow continue to shape population genetic structure. Cumberlandia monodonta, a widespread but imperiled (IUCN listed as endangered) freshwater mussel, was examined to determine genetic diversity and population genetic structure throughout its range. Mitochondrial DNA sequences and microsatellite loci were used to measure genetic diversity and simulate demographic events during the Pleistocene using approximate Bayesian computation (ABC) to test explicit hypotheses explaining the evolutionary history of current populations. A phylogeny and molecular clock suggested past isolation created two mtDNA lineages during the Pleistocene that are now widespread. Two distinct groups were also detected with microsatellites. ABC simulations indicated the presence of two glacial refugia and post-glacial admixture of them followed by simultaneous dispersal throughout the current range of the species. The Ouachita population is distinct from others and has the lowest genetic diversity, indicating that this is a peripheral population of the species. Gene flow within this species has maintained high levels of genetic diversity in most populations; however, all populations have experienced fragmentation. Extirpation from the center of its range likely has isolated remaining populations due to the geographic distances among them.  相似文献   

5.
The widespread distribution of the freshwater shrimp Paratya australiensis in eastern Australia suggests that populations of this species have been connected in the past. Amphidromy is ancestral in these shrimps, although many extant populations are known to be restricted to freshwater habitats. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to examine diversity within P. australiensis and to assess the relative importance of amphidromy in its evolutionary history. We hypothesized that if transitions from an amphidromous to a freshwater life history were important, then we would find a number of divergent lineages restricted to single or groups of nearby drainages. Alternatively, if amphidromy was maintained within the species historically, we expected to find lineages distributed over many drainages. We assumed that the only way for divergence to occur within amphidromous lineages was if dispersal was limited to between nearby estuaries, which, during arid periods in the earth's history, became isolated from one another. We found nine highly divergent mtDNA lineages, estimated to have diverged from one another in the late Miocene/early Pliocene, when the climate was more arid than at present. Despite this, the geographic distribution of lineages and haplotypes within lineages did not support the notion of a stepping-stone model of dispersal between estuaries. We conclude that the extensive divergence has most likely arisen through a number of independent amphidromy-freshwater life history transitions, rather than via historical isolation of amphidromy populations. We also found evidence for extensive movement between coastal and inland drainages, supporting the notion that secondary contact between lineages may have occurred as a result of drainage rearrangements. Finally, our data indicate that P. australiensis is likely a complex of cryptic species, some of which are widely distributed, and others geographically restricted.  相似文献   

6.
Aim To investigate the degree of phylogeographical divergence within pygmy whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of disjunct populations within North America. Location North America from western Alaska to Lake Superior. Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS‐1, ITS‐2) DNA sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS‐2, but the relationships among lineages were not resolved by the ITS‐1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times. Main conclusions The current range disjunctions of pygmy whitefish in North America probably resulted from isolation, genetic divergence, and selective dispersal from at least two major Pleistocene glacial refugia: Beringia and Cascadia. More recent isolation and dispersal from an upper Mississippi refugium is suggested by relationships within one of the clades and by distributional evidence from co‐distributed species. The Beringian and Cascadian refugia have played major roles in the zoogeography of Nearctic temperate aquatics, but the roles of smaller refugia appear more variable among other species.  相似文献   

7.
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy.  相似文献   

8.
We examined genetic diversity within- and among-populations of speckled dace (Rhinichthys osculus) in five major drainage systems in the state of Oregon in western North America. Analysis of sequence variation in a 670-bp segment of the mitochondrial cytochrome b gene revealed deep divergence among basins and high genetic diversity within basins. Application of a molecular clock indicated that the divergence time among basins reflects vicariant events during the late Miocene to early Pliocene. The high levels of genetic diversity observed within basins is likely due to large historic population sizes, in particular, within the Klamath Basin. Two highly divergent mtDNA lineages were found to co-occur in populations in the Klamath Basin. This result may be indicative of a complex history of isolation and reconnection in this basin and/or multiple colonization events. Based on the observed level of mtDNA divergence these lineages may represent two reproductively isolated sympatric taxa. We recommend that major basins be regarded as distinct ESUs based on high levels of subdivision, deep divergences, and reciprocal monophyly among basins.  相似文献   

9.
We define the geographical distributions of mitochondrial DNA (mtDNA) lineages embedded within a broadly distributed, arid-dwelling toad, Bufo punctatus. These patterns were evaluated as they relate to hypothesized vicariant events leading to the formation of desert biotas within western North America. We assessed mtDNA sequence variation among 191 samples from 82 sites located throughout much of the species' range. Parsimony-based haplotype networks of major identified lineages were used in nested clade analysis (NCA) to further elucidate and evaluate shallow phylogeographic patterns potentially associated with Quaternary (Pleistocene-Holocene) vicariance and dispersal. Phylogenetic analyses provided strong support for three monophyletic lineages (clades) within B. punctatus. The geographical distributions of the clades showed little overlap and corresponded to the general boundaries of the Peninsular Desert, and two continental desert regions, Eastern (Chihuahuan Desert-Colorado Plateau) and Western (Mojave-Sonoran deserts), geographically separated along the Rocky Mountains and Sierra Madre Occidental. The observed divergence levels and congruence with postulated events in earth history implicate a late Neogene (latest Miocene-early Pliocene) time frame for separation of the major mtDNA lineages. Evaluation of nucleotide and haplotype diversity and interpretations from NCA reveal that populations on the Colorado Plateau resulted from a recent, likely post-Pleistocene, range expansion from the Chihuahuan Desert. Dispersal across historical barriers separating major continental clades appear to be recent, resulting in secondary contacts in at least two areas. Given the observed contact between major clades, we speculated as to why the observed deep phylogeographic structure has not been eroded during the multiple previous interglacials of the Pleistocene.  相似文献   

10.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

11.
Restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA) was used to reconstruct postglacial dispersal routes of arctic charr Salvelinus alpinus in North America. Twelve of 35 restriction enzymes detected polymorphisms among representative populations, revealing two distinct lineages with an estimated nucleotide divergence of 1.32%. Subsequent screening of 869 fish from 54 populations with four diagnostic restriction enzymes showed that these lineages have largely allopatric distributions, suggesting their dispersal from separate northern and eastern glacial refugia. In addition, geographical and genetic structure among eastern populations suggested the existence of a second eastern refuge. Among the three lineages, the most divergent (Arctic) lineage occurred from Alaska east to northern Labrador. Quebec, New Brunswick, and New England were colonized by a second (Laurentian) lineage, and Labrador by a third group. Contact between refugial groups was only detected in two Labrador populations. The Arctic lineage was highly differentiated from eastern North American and European haplotypes, and probably diverged during the early Pleistocene. By contrast, the Laurentian and Labrador groups were similar to Old World charr, suggesting a shared ancestry during the mid-Pleistocene. In addition, the close relationship between Labrador and Laurentian charr indicates their probable divergence during the Wisconsinan glaciation.  相似文献   

12.
We recovered 26 genetically distinct avian malaria parasite lineages, based on cytochrome b sequences, from a broad survey of terrestrial avifauna of the Lesser Antilles. Here we describe their distributions across host species within a regional biogeographic context. Most parasite lineages were recovered from a few closely related host species. Specialization on one host species and distribution across many hosts were both rare. Geographic patterns of parasite lineages indicated limited dispersal and frequent local extinction. The central islands of the archipelago share similar parasite lineages and patterns of infection. However, the peripheral islands harbor well-differentiated parasite communities, indicating long periods of isolation. Nonetheless, 20 of 26 parasite lineages were recovered from at least one of three other geographic regions, the Greater Antilles, North America, and South America, suggesting rapid dispersal relative to rate of differentiation. Six parasite lineages were restricted to the Lesser Antilles, primarily to endemic host species. Host differences between populations of the same parasite lineage suggest that host preference may evolve more rapidly than mitochondrial gene sequences. Taken together, distributions of avian malarial parasites reveal evidence of coevolution, host switching, extinction, and periodic recolonization events resulting in ecologically dynamic as well as evolutionarily stable patterns of infection.  相似文献   

13.
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW–NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW–NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito‐nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within‐species discord. Male‐mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.  相似文献   

14.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

15.
The historical biogeography of the southern group of Moxostoma Rafinesque, 1820, a genus of Nearctic freshwater fishes belonging to the Catostomidae, along its entire distribution in North America was inferred to: (1) determine the biogeographical events responsible for its current pattern of diversity and distribution; (2) correlate the climatic and geologic history of the region with the biogeographical pattern observed; and (3) trace the colonization route into central Mexico and the western Pacific slope drainages. The sequences of mitochondrial cytochrome b and the third intron of the growth hormone were obtained for the members of the southern group and related species of the Catostomidae. Phylogenetic analyses and relaxed molecular clock analyses were performed to determine the relatedness of the species and to estimate divergence times. To uncover biogeographical patterns, a dispersal–extinction–cladogenesis (DEC) analysis was conducted. The phylogenetic analyses were consistent with the historical hydrographic scenario in the region. The divergence times show that the southern group evolved during the Pliocene–Pleistocene. The DEC analyses showed that vicariance and dispersal played an important role in the current distribution patterns of the lineages in central Mexico, and allow us to trace an independent route of colonization from the northern areas of North America into central Mexico.  相似文献   

16.
We performed a phylogenetic analysis of mtDNA variation among seven sympatric pairs of dwarf and normal morphotypes of whitefish from northern Québec and the St. John River drainage to address three questions relevant to understanding their radiation. Are all sympatric pairs reproductively isolated? Do phylogenetic analyses confirm that sympatric whitefish morphotypes found in eastern North America represent the outcome of polyphyletic evolutionary events? If so, did all sympatric pairs from the St. John River drainage originate from the same scenario of allopatric divergence and secondary contact? The hypothesis of genetic differentiation was supported for all sympatric pairs from the St. John River drainage, whereas lack of mtDNA diversity precluded any test of reproductive isolation for northern Québec populations. Patterns of mtDNA variation confirmed that dwarf and normal morphotypes evolved in parallel among independent, yet closely related, lineages, thus providing indirect evidence for the role of natural selection in promoting phenotypic radiation in whitefish. Patterns of mtDNA diversity among sympatric pairs of the St. John River indicated a complex picture of whitefish evolution that implied sympatric divergence and multiple allopatric divergence/secondary contact events on a small geographic scale. These results suggests that ecological opportunities, namely trophic niche availability, may promote population divergence in whitefish.  相似文献   

17.
The lack of morphological variation in many freshwater invertebrates over vast distances has been cited as evidence for their frequent, long-distance dispersal. This scenario implies that vicariance will be an insignificant determinant of species distributions or diversity. We carried out a phylogeographic and population genetics study of one widespread crustacean group, the North American Daphnia laevis complex. Allozyme and sequence variation of two mtDNA genes (12S and 16S rRNA) clearly indicates the existence of five morphologically cryptic, largely allopatric groups (Daphnia dubia, D. laevis laevis, D. laevis gessneri, D. magniceps magniceps, and D. magniceps pacifica ssp. n.). Within each of these groups, there is weak or no genetic differentiation over large geographic areas suggesting their recent long-distance dispersal. The present-day distributions and phylogeography of the regional groups suggests the occurrence of both deep and shallow vicariance events. Although divergence times from mtDNA sequences do indicate both deep and shallow divergences, these estimates are incongruent with their proposed vicariance times. The results show that even within closely related freshwater invertebrates, a complex biogeography exists, whose analysis is made difficult by long-distance dispersal, cryptic endemism, and pseudocongruence.  相似文献   

18.
Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550–1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies.  相似文献   

19.
The exceptional diversity of insects is often attributed to the effects of specialized relationships between insects and their hosts. Parasite-host interactions are influenced by current natural selection and dispersal, in addition to historical effects that may include past selection, vicariance, and random genetic drift. Both current and historical events can lead to reduced fitness on some hosts. If trade-offs in fitness on alternate hosts are common, adaptation to one host can prevent adaptation to another, giving rise to genetic differentiation among host-associated lineages. Previous studies of Diaeretiella rapae (Hymenoptera: Aphidiidae), a parasitoid of aphids, have revealed additive genetic differences in performance between populations that parasitize different aphid host species. To determine whether D. rapae populations collected from different aphid hosts have diverged into genetically independent lineages, we constructed a haplotype network based on sequence variation in mitochondrial DNA (mtDNA). We used single strand conformation polymorphism (SSCP) analysis to examine 2041 base pairs of mtDNA and to identify nucleotide sequences of 42 unique SSCP haplotypes. We found no association between mtDNA haplotypes and host species in either the ancestral range (Europe, Mediterranean region, Middle East, Asia) or part of the introduced range (western North America). Haplotypes likely to be ancestral were geographically widespread and found on both hosts, suggesting that the ability to use both hosts evolved prior to the diversification of the mtDNA. Ongoing gene flow appears to prevent the formation of host races.  相似文献   

20.
The barn swallow (Hirundo rustica) is one of most widely distributed swallows, owing in part to its recent switch from natural nest sites to human structures. We conducted phylogenetic analysis of mitochondrial (mt) and nuclear DNA to explore the recent evolutionary history of this species. Strongly supported mtDNA clades corresponded to Europe, Asia and North America plus the Baikal region of Asia. Analysis of sequence data from a sex-linked nuclear gene was unable to recover the phylogenetic splits in the mtDNA tree, confirming that the main clades evolved recently. The phylogenetic pattern suggests that the ancestral area of the barn swallow was the holarctic; most divergence events are consistent with vicariance. Most unexpectedly, analyses show that barn swallows from North America colonized the Baikal region in the recent past (one fixed substitution). This dispersal direction is opposite of that for most nearctic-palearctic taxon exchanges. Although this invasion was envisioned to coincide with the appearance of new types of human dwelling in the Baikal region, calibration of molecular divergence suggests an older dispersal event. A recent history of gene flow within the main palearctic clades is consistent with range and population expansion owing to new nesting opportunities provided by human settlements. Contrary to expectation, populations in North America appear historically larger and more stable than those in the palearctic. The Baikal population apparently has not increased greatly since colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号