首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桂西北喀斯特区原生林与次生林凋落叶降解和养分释放   总被引:2,自引:0,他引:2  
凋落叶降解及养分释放研究对喀斯特生态脆弱区森林生态系统的恢复与重建具有重要指导意义。本文选取桂西北喀斯特区3种原生林与3种次生林进行比较,研究其凋落叶降解与降解过程中的营养元素释放规律以及降解速率的影响因子。结果表明,原生林凋落叶的降解速率略大于次生林。C、N、K元素在前180天释放速率较快,随后趋于稳定。次生林凋落叶总P含量在降解初始阶段呈净积累,随后净释放,而原生林的凋落叶在降解360天后仍呈现P素净积累。相关分析表明,凋落叶降解速率与凋落叶初始总N、木质素含量及木质素:N比值呈负相关,与C:N比呈正相关。综合比较发现,次生林圆叶乌桕(Sapium rotundifolium Hemsl)凋落叶的降解速率与养分释放速率较快,是喀斯特退化土地及植被恢复过程中潜在的优势种和建群种。  相似文献   

2.
3.
The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human‐induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem‐level process in forest streams. Here, we present a meta‐analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream‐reach scale. By contrast, nutrient enrichment at the litter‐bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co‐limitation of decomposition in streams. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher for wood than for leaves, and for low‐quality than for high‐quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta‐analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low‐quality plant litter inputs.  相似文献   

4.
增温和放牧对高寒草甸植物细根的分解和养分丧失具有叠加效应 细根的分解是调控生态系统碳循环,影响养分循环以及土壤肥力的关键过程。然而,在自然生态系统中关于增温和放牧影响细根分解的研究十分匮乏。本研究利用非对称增温(即:昼夜和季节性不对称)和适度放牧(约50%饲草利用率)的两因素野外控制试验,探讨增温和放牧对青藏高原高寒草甸为期两年的细根分解和养分丧失的影响。增温和放牧通过提高细根分解促进了碳的循环,并影响了元素循环,但各元素的循环特征各自不同。增温和放牧对细根分解和养分丧失的影响是叠加的。试验两年期间,增温和放牧显著提高了细根累积生物量和总有机碳的丧失量。仅增温并放牧处理显著降低了氮元素百分率丧失量,而无论放牧与否,增温显著降低了磷元素苞粉率丧失量。与对照比较,仅增温或放牧提高了钾、钠、钙、镁的百分率丧失量。增温和放牧对细根分解和养分丧失未呈现交互影响。降低磷丧失较减低氮丧失对温度更加敏感。在未来变暖情景下,细根分解产生的不同养分百分率丧失对温度的敏感性差异可能调整不同养分在土壤中的有效率,进而影响生态系统的结构和功能。  相似文献   

5.
几种常微量元素在辽东栎枝条分解过程中的变化特征   总被引:5,自引:1,他引:4  
应用分解网袋法 ,对暖温带落叶阔叶林主要优势树种辽东栎小枝进行连续 5a的分解研究 ,测定了 Ca、Mg、Cu、Zn和 Mn5种元素在凋落物分解过程中的含量和剩余百分率的变化 ,发现这两个指标在这几种元素之间既有一定的相似性 ,又有一定的差异。相似性表现在这几种元素在分解开始时 ,其含量都有一个不断上升的过程。但有的表现为不断上升( Ca和 Zn) ,而有的则在分解阶段的中期 ,已开始明显下降 ( Mg,Cu和 Mn)。从丢失速率常数上看 (根据 Olson的失重率常数 k) ,由于 Ca和 Cu在分解过程中的大量增加 ,因而用 Olson指数方程的拟合效果较差 ,而其它 3种元素用 Olson指数方程拟合结果相比较 ,发现 Mn的失重率略高于 Mg,而超过 Zn的 2倍。但这些元素的失重率都明显低于一些大量营养元素如 N、P、K的失重率  相似文献   

6.
Multiple nutrients limit litterfall and decomposition in a tropical forest   总被引:3,自引:0,他引:3  
To explore the importance of 12 elements in litter production and decomposition, we fertilized 36 1600 m2-plots with combinations of N, P, K, or micronutrients (i.e. B, Ca, Cu, Fe, Mg, Mn, Mo, S, Zn) for 6 years in a lowland Panamanian forest. The 90% of litter falling as leaves and twigs failed to increase with fertilization, but reproductive litter (fruits and flowers) increased by 43% with N. K enhanced cellulose decomposition; one or more micronutrients enhanced leaf-litter decomposition; P enhanced both. Our results suggest tropical forests are a non-Liebig world of multiple nutrient limitations, with at least four elements shaping rates of litterfall and decomposition. Multiple metallomic enzymes and cofactors likely create gradients in the break down of leaf litter. Selection favours individuals that make more propagules, and even in an N-rich forest, N is a non-substitutable resource for reproduction.  相似文献   

7.
森林凋落物分解重要影响因子及其研究进展   总被引:56,自引:4,他引:56  
当前 ,森林凋落物分解被放在陆地生态系统碳平衡背景下进行研究 ,认识凋落物分解过程的影响因素和影响机理对理解地表碳平衡具有重要意义。凋落物在分解过程中 ,伴随有养分含量的变化 ,低品质凋落物在分解前期 (可达 2~ 3年 )会从环境中固定养分 ,特别是氮磷养分 ,而在后期则会释放出养分。凋落物本身的养分含量是影响分解速率的重要因素 ,高养分含量的凋落物分解快些 ,阔叶凋落物比针叶凋落物分解快些。有资料显示 ,在总分解率为2 9 4 %的构成中 ,理化因素、微生物因素与土壤动物因素对凋落物分解的贡献率分别为 7 2 %、8 0 %和 14 2 %。不同类型凋落物在分解过程中的土壤动物类群也不同 ,它也是造成凋落物分解速率不同的关键因素 ,通常阔叶树种凋落物分解过程中 ,会有更多的微节肢动物出现。CO2浓度升高将造成植物有机质含碳量与其它养分的比值升高 ,形成低品质的凋落物 ,从而间接影响凋落物分解速率 ,一般认为 ,全球CO2 浓度升高会加强土壤作为碳汇的功能。  相似文献   

8.
As in many ecosystems, carbon (C) cycling in arctic and boreal regions is tightly linked to the cycling of nutrients: nutrients (particularly nitrogen) are mineralized through the process of organic matter decomposition (C mineralization), and nutrient availability strongly constrains ecosystem C gain through primary production. This link between C and nutrient cycles has implications for how northern systems will respond to future climate warming and whether feedbacks to rising concentrations of atmospheric CO2 from these regions will be positive or negative. Warming is expected to cause a substantial release of C to the atmosphere because of increased decomposition of the large amounts of organic C present in high-latitude soils (a positive feedback to climate warming). However, increased nutrient mineralization associated with this decomposition is expected to stimulate primary production and ecosystem C gain, offsetting or even exceeding C lost through decomposition (a negative feedback to climate warming). Increased primary production with warming is consistent with results of numerous experiments showing increased plant growth with nutrient enrichment. Here we examine key assumptions behind this scenario: (1) temperature is a primary control of decomposition in northern regions, (2) increased decomposition and associated nutrient release are tightly coupled to plant nutrient uptake, and (3) short-term manipulations of temperature and nutrient availability accurately predict long-term responses to climate change.  相似文献   

9.
The importance of detritus varies greatly among shore zones of lakes, but in a large majority of these regions detrital pathways prevail. Aside from a great spatial and seasonal variability, macrophytes and bottom sediments appear to be dominant stores of nutrients in these habitats. Macrophytes hold a central position in nutrient cycling in the shore-littoral lake zones. They are the main source of autochthonous detritus as they prevail in the total biomass of littoral organisms, and they are only rarely available as direct food of consumers. Various processes and interactions determine the role of macrophytes in nutrients dynamics. These are: the intensity of nutrient uptake and translocation, release of nutrients by healthy plants and from decomposing plants, exchange of elements between macrophytes and their periphyton, as well as interception of seston by macrophyte stands. Particular plant species differ in their time of dying and susceptibility to decomposition. The changes in decomposing material (size structure of particles and nutrient content) mean that detritus in various stages of decomposition differs in its role in trophic dynamics of shore-littoral lake zones. Several types of shore regions as regards detritus sources and retention level are discussed.  相似文献   

10.
宁南山区典型植物根系分解特征及其对土壤养分的影响   总被引:1,自引:0,他引:1  
杨轩  李娅芸  安韶山  曾全超 《生态学报》2019,39(8):2741-2751
根系分解是陆地生态系统碳和养分循环的重要地下生态过程,研究宁南山区典型植物根系分解特征及其对土壤养分的影响,能够丰富和完善陆地生态系统的物质和能量循环机制,为我国黄土高原植被恢复过程中植物与土壤之间的养分循环提供依据。连续2年研究了宁南山区3种典型植物(长芒草、铁杆蒿和百里香)根系的分解特征及其对土壤养分的影响。结果表明,长芒草、铁杆蒿和百里香根系年分解指数(K)分别0.00891、0.01128、0.01408,分解速率依次表现为百里香铁杆蒿长芒草。分解16个月后3种典型植物根系释放大量养分,其中碳的释放量在57.05—124.39 g/kg;氮的释放量在0.12—0.47 g/kg。3种典型植物根系对土壤养分的影响主要表现为:试验结束时,0—5 cm表层土壤有机碳含量提高了0.17—0.35 g/kg,5—20 cm土层土壤有机碳含量提高了0.26—0.35 g/kg。相关性分析可知,植物根系养分释放量与土壤养分含量之间存在一定的负相关关系,当土壤养分含量较低时,根系会增加养分释放量进行补充。由此可知,根系分解提高了土壤养分含量,有效的促进了养分在根系-土壤中的循环。  相似文献   

11.
The merits of methods which have been or could be used to estimate the rate of decomposition of litter in eucalypt forests are discussed, and recommendations are given for their improved application. Since each method has serious limitations, several approaches need to be combined in most studies for conclusions to be drawn with confidence. Suitable methods for studying the loss of weight of litter as it decays include the use of mesh bags, the tethering of leaves, the measurement of respiration rate, and the temporal comparison of inputs of litter with changes in accumulated litter. Where the litter can be aged with some confidence (e.g. after afire) and where grazing by litter invertebrates is low, the loss of weight per unit of leaf area is a useful index of the decomposition rate of leaves in situ. For study of the pattern of nutrient release from litter the most promising method is the collection and analysis of litter leachate. Fresh, naturally shed litter should usually be used in studies which require measurements on a selected sample. Green foliage picked from branches normally has a much higher nutrient content and decomposes more rapidly than leaves which are naturally abscissed. Difficulty in identifying and thus measuring the weight of the incorporated component (mull-type humus) of accumulated litter, and the likely absence of steady-state quantities of accumulated litter because of widespread fires, seriously hinder both the estimation and application of decomposition constants (k) in Australian eucalypt forests. Based on limited available evidence, initial rates of litter decomposition (e.g. as measured in litterbags over a 12–18 month period) should not be extrapolated to predict long-term rates of decomposition. In several eucalypt forests, the major release of organically bound nutrients does not occur until litter has undergone several years of decay, and probably occurs after some fragmentation and incorporation of litter into the surface soil. Much more information is needed on these processes, including the role of C: element ratio, litter fauna, changed microclimate as litter is incorporated, and the influence of plant roots on mineralization processes.  相似文献   

12.
 以西双版纳热带湿性季节沟谷雨林混合凋落叶作为分解基质,在不同位置季节雨林样地,采用不同网孔( 2和0.15 mm)分解袋,开展大中型土壤动物对雨林凋落叶分解影响的实验,测定了不同网孔分解袋土壤动 物多样性、凋落叶分解速率和主要养分元素释放状况。结果显示:2 mm网孔分解袋土壤动物类群相对密度 年均值为2.67~2.83目•g-1凋落物干重,个体相对密度年均值为22.3~21.77个•g-1凋落物干重,显著 高于0.15 mm网孔分解袋的类群相对密度0.27~0.28目•g-1凋落物干重和个体相对密度2.88~2.77个•g- 1凋落物干重(p<0.01),并且0.15 mm网孔分解袋中极少量的动物个体主要为小型类群弹尾目和蜱螨目( 原生动物、湿生土壤动物线虫不计),由此我们视2 mm网孔分解袋凋落叶分解由绝大多数土壤动物和其它 土壤生物共同作用,而0.15 mm网孔分解袋基本排除了大中型土壤动物对袋内凋落叶分解的影响。2 mm网 孔分解袋凋落叶物质失重率(71%左右)、分解率指数(1.88~2.44)和主要养分元素释放率明显高于 0.15 mm分解袋(34%~35%,0.48~0.58)。通过比较两种不同网孔分解袋凋落叶失重率和元素释放率的 差异,显示出季节雨林大中型土壤动物群落对凋落叶物质损失的贡献率为年均值46%左右,并使凋落叶C/N 和C/P明显降低,而对不同元素释放率的影响不同,其中对N、S和Ca元素释放率的影响较大,而对K素释放 的影响作用最小。相关分析显示,2 mm网孔分解袋内土壤动物群落类群和个体的相对密度与凋落叶物质残 留率有较好的负相关关系,而群落香农多样性指数与凋落叶分解率指数表现出一定的正相关关系。  相似文献   

13.
生源要素有效性及生物因子对湿地土壤碳矿化的影响   总被引:3,自引:0,他引:3  
张林海  曾从盛  仝川 《生态学报》2011,31(18):5387-5395
湿地土壤是全球碳存储的重要场所,湿地生态系统的碳循环过程对全球变化有重要指示作用。土壤碳矿化是湿地生态系统碳循环的重要环节,对于认知湿地生态系统生物地球化学循环过程具有重要的意义。综述了生源要素及生物因素对湿地土壤碳矿化的内在作用机制。土壤活性有机碳库通过调节土壤能源物质和微生物活性影响土壤碳库的有效性,是表征土壤碳矿化的敏感指标。湿地其它养分如N、P、S等元素的有效性也是影响土壤碳矿化的关键要素。电子受体(NO3-、SO42-、Fe3+、Mn4+等)对湿地土壤碳矿化和有机碳转变的影响主要通过电子受体的还原过程完成,在厌氧分解过程中,湿地土壤利用难溶性电子受体可能是土壤C矿化的更重要途径。动物、植物、微生物群落和区系等则是土壤碳矿化的主要驱动因子。土壤动物区系在有机态养分矿化为无机态养分的过程有着独特的功能,能显著增加土壤碳矿化。土壤微生物的活性,决定着土壤中有机碎屑的降解速率,是土壤有机碳分解周转的主要诱导因素。湿地植物则通过影响根系、微生物呼吸底物的供应以及对小气候和土壤因子的调节而影响土壤有机质的分解。湿地生源要素和生物因子还极易与土壤理化性质如温度、水分、pH值和质地等环境因素形成交互和制约,共同影响土壤碳矿化。最后,提出了进一步研究生源要素和生物因素与湿地土壤碳矿化关系需要解决的一些重要问题。  相似文献   

14.
森林凋落物分解及其对全球气候变化的响应   总被引:17,自引:4,他引:17  
杨万勤  邓仁菊  张健 《应用生态学报》2007,18(12):2889-2895
凋落物分解是重要的森林生态系统过程之一,受到气候、凋落物质量、土壤生物群落等生物和非生物因素的综合调控.迄今,有关不同森林生态系统和不同树种地上部分的凋落物动态、凋落物分解过程中的养分释放动态、生物和非生物因素对凋落物分解的影响等研究报道较多,但对地下凋落物的分解研究相对较少.近年来,森林凋落物分解对以大气CO2浓度增加和温度升高为主要特征的全球变化的响应逐步受到重视,但其研究结果仍具有很多不确定性.因此,未来凋落物生态研究的重点应是凋落物分解对土壤有机碳固定的贡献、地上/地下凋落物的物理、化学和生物学过程及其对各种生态因子(例如冻融、干湿交替)及交互作用的响应、凋落物特别是地下凋落物分解对全球气候变化的响应机制等方面.  相似文献   

15.
凋落物分解及其影响机制   总被引:2,自引:0,他引:2       下载免费PDF全文
为系统了解中国凋落物分解及其影响机制的研究进展, 基于当前常用的4个学术期刊数据库(中国知网、ISI Web of Science、ScienceDirect和Springer Link), 检索1986-2018年的相关文献并进行计量分析。中国凋落物分解研究以森林生态系统为主(占65%), 且多集中于易于观测的地上凋落物部分, 未来应加强地下部根系凋落物分解研究。凋落物分解研究对象通常选取当地优势种或主要组成物种(约占68%), 考虑到混合效应的存在, 仅依据单一凋落物分解研究结果来反映自然界中混合凋落物的实际分解特征具有局限性。目前中国凋落物分解研究主要集中在碳、氮、磷3种元素上, 应更多关注影响分解的重要化学组分(如钾、铁、锰、木质素、单宁等)和环境污染相关重金属元素的迁移转化及调控机理。未来需将植物-凋落物-土壤作为一个整体, 结合生态化学计量学, 系统研究各元素的生物地球化学循环过程、机制及耦合关系。氮沉降和气候变化对凋落物分解的影响是当前研究热点, 特别是氮、磷等多因子交互作用对凋落物分解的影响, 以及气候变暖背景下凋落物分解的温度敏感性、冻土区凋落物分解驱动机制的研究。  相似文献   

16.
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.  相似文献   

17.
盐胁迫下木麻黄幼树营养元素的分配规律   总被引:3,自引:1,他引:2  
利用盆栽试验,研究了盐胁迫下木麻黄幼树营养元素含量和分布规律。结果表明,不同施盐量处理的木麻黄幼树生长、营养元素含量及分布发生明显的变化。低浓度(5g/kg)NaCl处理促进了木麻黄的生长,而高浓度(20、25g/kg)则抑制木麻黄的生长。随着盐浓度的增加,木麻黄根中N、P、K,茎中N、P,小枝中N含量随之增加,并与盐浓度之间呈显著正相关,而茎和小枝中的K以及小枝中的Ca含量则与盐浓度之间呈显著负相关,说明盐胁迫下木麻黄营养元素的比例失调是导致盐害的主要原因之一。盐浓度对Mg元素影响较小。  相似文献   

18.
羊草草甸枯枝落叶的分解、积累与营养物质含量动态   总被引:20,自引:3,他引:20       下载免费PDF全文
通过数理统计,建立了枯枝落叶的分解和积累模型。枯枝落叶的消失率为0.4065g/g·a,消失量比率的季节变化符合于logisitic曲线,分解活动在5—9月份最活跃,这段时间的消失量约占全年消失量的90%。 分解作用冬季基本停止。羊草草甸在现有情况下,积累量达95%稳定状态大约需要8年。最大积累量约为572g/m2,在分解过程中,枯枝落叶中化学成分的含量和分解初期相比不断下降。氮、磷、钾较其它化学元素损失得快。纤维素分解较慢。各种化学成份损失的顺序是:K>P>N>Na>Ca>Mg>Fe>纤维素。  相似文献   

19.
The relative contribution of different soil organism groups to nutrient cycling has been quantified for a number of ecosystems. Some functions, particularly within the N-cycle, are carried out by very specific organisms. Others, including those of decomposition and nutrient release from organic inputs are, however, mediated by a diverse group of bacteria, protozoa, fungi and invertebrate animals. Many authors have hypothesized that there is a high degree of equivalence and flexibility in function within this decomposer community and thence a substantial extent of redundancy in species richness and resilience in functional capacity. Three case studies are presented to examine the relationship between soil biodiversity and nitrogen cycling under global change in ecosystem types from three latitudes, i.e. tundra, temperate grassland and tropical rainforest. In all three ecosystems evidence exists for the potential impact of global change factors (temperature change, CO2 enrichment, land-use-change) on the composition and diversity of the soil community as well as on various aspects of the nitrogen and other cycles. There is, however, very little unequivocal evidence of direct causal linkage between species richness and nutrient cycling efficiency. Most of the changes detected are shifts in the influence of major functional groups of the soil biota (e.g. between microflora and fauna in decomposition). There seem to be few data, however, from which to judge the significance of changes in diversity within functional groups. Nonetheless the soil biota are hypothesized to be a sensitive link between plant detritus and the availability of nutrients to plant uptake. Any factors affecting the quantity or quality of plant detritus is likely to change this link. Rigorous experimentation on the relationships between soil species richness and the regulation or resilience of nutrient cycles under global change thus remains a high priority.  相似文献   

20.
Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator–prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号