首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changing profile of enolase (EC 4.2.1.11) isoenzymes in differentiating mouse cells has been traced by the use of specific antisera to the three subunits α, β, and γ. The amounts of the isoenzymes were measured in a variety of tissues during normal mouse development and during the differentiation of mouse teratocarcinoma cells in culture and as tumors. One isoenzyme is predominant in the early cells of the developing mouse embryo, namely, the homodimer made up of α subunits. The same isoenzyme is also the sole form detected in undifferentiated teratocarcinoma (embryonal carcinoma) cells. The isoenzyme form remains unchanged in developing primitive and definitive endoderm of the embryo. Similarly, endoderm cells formed by differentiation of embryonal carcinoma cells contained only αα enolase. In contrast, during the development of striated muscle and of brain, increasing proportions of β and γ subunits, respectively, were detected. Thus enolase was found to be a marker of the differentiation of these tissues. This conclusion was substantiated by finding significant amounts of the β subunit in teratocarcinoma cell cultures which had formed beating striated muscle in vitro.  相似文献   

2.
Treatment of embryonal carcinoma cells F9 with retinoic acid results in the appearance of epithelioid cells resembling endoderm which synthesize basement membrane protein and plasminogen activator. Concomitant with the appearance of these properties of differentiated cells, the epithelial cells cease to express SSEA-1, an antigenic determinant characteristic of teratocarcinoma stem cells and early mouse embryos. Our evidence indicates that the phenotypic changes that accompany retinoic acid treatment of embryonal carcinoma cells are irreversible and a consequence of the differentiation of the cells into endoderm.  相似文献   

3.
Abstract. We document the time of appearance and the levels of two markers of differentiation during the formation of embryoid bodies by two embryonal carcinoma (EC) cell lines. Neither of these markers has been described before for EC cells differentiating in aggregate culture, and they further extend the identification and characterization of new cell types. Both F9 and PC13 EC cell lines form embryoid bodies (so-called because they resemble early mouse embryos) with an outer epithelial layer of visceral endoderm cells, after suspension culture in the presence of retinoic acid. However, the two cell lines differ in the procedures needed to initiate the differentiation process. Once floating aggregate cultures have been formed, the time course of the appearance of epidermal growth factor (EGF) receptors and of the secretion of transferrin are similar in both cell lines, although the levels differ. EGF receptors and transferrin are quantified by 125I-EGF binding assays and enzyme-linked immunosorbent assays (ELISA) using specific antibodies, respectively. The expression of EGF receptors increases about two fold while that of transferrin increases up to 40 fold after treating F9 aggregates with retinoic acid. The EGF receptors reach a maximum 4 days after adding retinoic acid and then decline, while transferrin only increases later from a low but detectable level. For PCI 3 cells, EGF receptors increase tenfold, and transferrin synthetic rate increases 40 fold during the time-course. Interestingly, unstimulated F9 cells in monolayer cultures also express low levels of these markers, while the levels in PC13 EC cells are barely detectable above background. A variety of other teratocarcinoma EC cell lines either do not express these markers at detectable levels or express very low levels. One explanation of our finding is that F9 cells, unlike most other EC cell lines, are already partially differentiated along the pathway to endoderm.  相似文献   

4.
Undifferentiated cells of a clonal line of teratocarcinoma can differentiate in vitro into embryoid bodies with morphological and biochemical features of early mouse embryo. During the first step of differentiation protein synthesis has been analysed by 2 dimensional gel electrophoresis. While new proteins are synthesized, the synthesis of others turned off with the appearance of endodermal cells in embryoid bodies. We have compared protein synthesis during teratocarcinoma differentiation and during early mouse embryogenesis at three stages of mouse preimplantation embryo. The results demonstrate that only the late blastocyst protein synthesis pattern shows most of the polypeptides identified in the differentiated protein synthesis pattern of teratocarcinoma. In contrast, protein synthesis during the early stages of mouse embryonic development is very different from protein synthesis in undifferentiated teratocarcinoma.  相似文献   

5.
Undifferentiated mouse teratocarcinoma cells were cocultivated with differentiated mouse endoderm cells in order to study the possible induction of teratocarcinoma cell differentiation. A difference in DNA content between the two cell types was experimentally introduced to enable the reisolation of the teratocarcinoma cells after cocultivation. Pseudotetraploid (2s) endoderm cell lines were produced from pseudodiploid (1s) cells by treatment of these cells with cytochalasin B and flow sorting of tetraploid cells, using Hoechst 33342 as a viable DNA stain, with subsequent cloning of sorted single cells. In model experiments, where mixtures of 1s teratocarcinoma and 2s endoderm cells were stained with Hoechst 33342, the teratocarcinoma cells could be reisolated with a purity of about 97%. After a cocultivation period of 24 days viable teratocarcinoma cells could be isolated from the cocultivation mixture with a purity of 95%. Two dimensional analysis of the protein pattern of these cells indicated that cocultivation did not induce a differentiated (endoderm) pattern. Therefore according to this analysis the teratocarcinoma cells were not induced to differentiate during a 24 day cocultivation period. The method described offers excellent possibilities for studying cell-cell interaction in vitro.  相似文献   

6.
It has been suggested that cell position regulates endodermal differentiation in mouse embryo inner cell masses and in aggregates of embryonal carcinoma (EC) cells. This hypothesis states that cells at the interface between the cell mass and blastocoel fluid or culture medium differentiate into endoderm, whereas internally located cells follow alternative developmental pathways. To test the cell position hypothesis, pluripotent PSA-1 cells were aggregated with hypoxanthine phosphoribosyltransferase-deficient, parietal-like, endodermal cells. The resulting aggregates consisted of cores of PSA-1 cells surrounded by endodermal cells. Autoradiography was used to distinguish between endodermal cells that were the products of EC cell differentiation and the exogenous endoderm. Alkaline phosphatase staining was used to distinguish EC cells from endodermal cells. As predicted by the cell position hypothesis, the PSA-1 EC cells, all of which were internally located, did not differentiate into endodermal cells. Nonspecific inhibition of differentiation did not account for the lack of PSA-1-derived endoderm since the PSA-1 cells in such aggregates did differentiate into columnar ectodermal-like cells. Similar experiments were also conducted with F9 cells. In this case, aggregation cultures contained retinoic acid to induce F9 cells to differentiate into visceral endoderm. In cultures containing F9 cells surrounded by parietal-like endodermal cells, no F9-derived endoderm was detected either autoradiographically or by assaying for alpha-fetoprotein production, a visceral endoderm marker. Thus, retinoic acid-induced endodermal differentiation was also regulated by cell position. Collectively, the above results provide strong evidence for the hypothesis that cell position regulates endodermal differentiation in aggregates of EC cells.  相似文献   

7.
It is well-established that fibroblast growth factors (FGFs) participate in mesoderm formation and patterning in the developing embryo. To identify cells in mammalian embryos that produce and/or respond to FGFs, we utilized the F9 teratocarcinoma cell system. Undifferentiated F9 cells resemble inner cell mass (ICM) cells of the mouse blastocyst by several criteria including having a characteristic high nuclear to cytoplasmic ratio and by their expression of stage-specific embryonic antigens. F9 stem cells differ from ICM cells by their low spontaneous rate of differentiation and their differentiation potential. ICM cells are heterogeneous with a proportion of the cells maintaining totipotency. In contrast, F9 stem cells appear capable of forming only endodermal derivatives. Retinoic acid (RA) treatment of F9 stem cells is required for them to differentiate, and under different culturing conditions the F9 cells will form either extraembryonic parietal or visceral endoderm. We have previously shown that FGF is synthesized by F9 parietal endoderm, but not by F9 stem cells. Our present study demonstrates that F9 aggregate cultures that contain visceral endoderm cells produce cell-associated-heparin-binding mitogens for 3T3 and endothelial cells, factors with characteristics of FGFs. Furthermore, our studies detect endothelial cell-mitogens within the extracellular matrix (ECM) of F9 parietal endoderm cells, not detected within F9 stem cell 'matrices'. Parietal endoderm cell matrix mitogens could be removed by prior treatment of the ECM with buffers containing heparin or 2 M NaCl, and could be neutralized by basic FGF antibodies.  相似文献   

8.
In this paper we discuss studies on basement membrane and interstitial matrix molecules in early development and teratocarcinoma differentiation. In the early embryo a compartmentalization of newly formed cell types takes place immediately by formation of basement membranes. The stage-specific developmental appearance of extracellular matrix molecules such as type IV collagen, laminin, entactin, fibronectin and proteoglycans seems to reflect a diversified role of extracellular matrices already in the earliest stages of development. In teratocarcinoma cultures the appearance and composition of extracellular matrices during the differentiation of endoderm cells closely resembles that found in the early embryo. Also in this respect the teratocarcinoma system can be used as a model for studies on early development. In later developmental phenomena other matrix molecules can also be of importance. Merosin, a novel tissue-specific basement membrane-associated protein that appears during muscle and nerve maturation is an example of such molecules.  相似文献   

9.
The introduction of a c-fos expression vector has been shown to potentiate spontaneous differentiation in teratocarcinoma cells. We have studied a teratocarcinoma stem cell line which can be induced to differentiate with dimethylsulfoxide (DMSO) to determine endogenous c-fos expression during the process of differentiation. c-Fos expression increases dramatically as P19S1801A1 embryonal carcinoma cells are induced to differentiate into a variety of cell types. Expression peaks 12 days after the start of aggregate culture about the same time as alphafetoprotein (AFP), a characteristic of visceral endoderm differentiation, as demonstrated by RNA hybridization to specific probes, ELISA, and immunofluorescent staining with specific antibodies. However, most differentiated cells expressed c-fos, while AFP was expressed in a minor fraction (less than 5%). The data suggest that c-fos is correlated with differentiation of teratocarcinoma cells but not specifically to visceral endoderm formation.  相似文献   

10.
In early postimplantation mouse development, transferrin synthesis appears to be a marker of visceral endoderm cell types. Transferrin was identified using immunoperoxidase staining, in the proximal (visceral) endoderm of the sixth-day egg cylinder, in some tissues at later stages, and in the visceral yolk sac (VYS) at all stages examined. Since the location of a plasma protein does not necessarily indicate its site of synthesis, the incorporation of labeled amino acids into transferrin was studied. Synthesis could be detected in egg cylinders on the seventh day of gestation onwards and in the VYS at all stages. However, although endoderm was the likely tissue source, its ability to synthesize transferrin after its isolation from the embryo was either much reduced or absent. The data are suggestive of a modulating influence by mesoderm and other cell types on transferrin synthesis in visceral endoderm cells. Three types of endoderm-like cells which are produced by teratocarcinoma embryonal carcinoma (EC) cells were analyzed for transferrin synthesis to assess possible parallels with the embryo. Embryoid bodies from PSA1 EC cells contained some outer endoderm cells which stained for transferrin and others which did not. The endoderm line PSA5E but not PYS-2 synthesized transferrin. The third type of endoderm-like cell (END cells) synthesized very little (OC15S1) or no (PC13 clone 5) transferrin. The conclusion that PSA5E, OC15 END, and some differentiated PSA1 cells have visceral endoderm-like character while PYS-2 reflects parietal endoderm phenotype is in agreement with published data.  相似文献   

11.
The mouse F9 teratocarcinoma cell line is a model that can be manipulated to imitate one of the earliest epithelial-mesenchymal transitions in mouse development. When cells are treated with Retinoic Acid they differentiate into primitive endoderm and into parietal endoderm with the addition of dibutyryl cAMP. Parietal endoderm also develops when undifferentiated cells express a constitutively active (CA) form of Galpha13(Q226L). Differentiation is accompanied by a translocation of beta-catenin to the nucleus and considerable changes to the cytoskeleton and cell morphology. ERM proteins facilitate rearrangements to the F-actin cytoskeleton, and at least one, moesin, is essential for cell survival. In this study we found that moesin translocated to the nucleus during RA-induced differentiation, and sequence analysis identified putative nuclear localization signals in the protein. In the absence of RA, transient over-expression of rat moesin or the distantly related zebrafish homologue in F9 cells induced primitive endoderm. Furthermore, no apparent beta-catenin was seen in the nucleus of cells over-expressing zebrafish moesin. Our previous results have shown that depleting F9 cells of moesin using an antisense morpholino strategy caused them to detach from the substrate unless they expressed CA-Galpha13(Q226L). This CA-Galpha13 signalling maintained cell survival, but at the expense of differentiation. We now report that over-expressing zebrafish moesin in mouse moesin-depleted F9 cells not only ensured cell survival, but also induced differentiation to primitive endoderm. Together, the results suggest a new role for moesin, acting in a signalling pathway facilitating the differentiation of extraembryonic endoderm.  相似文献   

12.
Summary A mammalian embryonic cell surface glycoprotein (ESGp), whose expression and biochemical structure seem to be developmentally regulated, has been isolated and characterized. The molecule expressed in two cell through morula stage mouse embryos has a molecular weight, by electrophoretic analyses, of 90 kDa. At the blastocyst stage, however, the molecule migrates as a broad, heterogeneous band ranging from 90 to 110 kDa. Evidence obtained from studies of embryonal carcinoma (EC) cells indicates that this band is actually a composite of three distinct molecules (molecular weight 90, 95, and 105 to 110 kDa), each of which is synthesized uniquely by one of the different cell types of the blastocyst: the embryonic ectoderm and visceral and parietal endoderms, respectively. A survey of various mouse tissues and cell lines has revealed that undifferentiated cells express the low molecular weight form (90 kDa) characteristic of embryonic ectoderm, whereas differentiated cells and adult tissues express the high molecular weight form (110 kDa) characteristic of parietal endoderm. Only the EC visceral endoderm cell analogues have been shown to express the intermediate molecule (95 kDa). In embryos, the antigen is uniformly distributed over the cell surface during early cleavage stages (two to eight cell); just before compaction, however, it seems to redistribute and becomes polarized at the outside exposed edges of blastomeres. In cultured EC cells, ESGp is found only in areas of cell-to-cell contact; free-standing surfaces of cells are negative for expression. It is possible, therefore, that ESGp may be involved in the intercellular adhesion of both EC cells and compacting embryos. This work was supported by grant R01 HD23402 from the National Institutes of Health, Bethesda, MD.  相似文献   

13.
Hybrids between mouse PCC4-azal teratocarcinoma cells and rat epithelial intestinal villus cells (PCI hybrids) are phenotypically teratocarcinoma cells. They express several teratocarcinoma-specific traits but do not express functions specific for differentiated cells. Tumour formation is partially or completely suppressed. Some of the hybrids show more extensive differentiation both in vitro and in vivo than the PCC4-azal parental line. The hybrids are capable of endoderm formation in monolayer cultures and of the formation of embryoid bodies in suspension cultures. Two of the tumour-forming hybrids generate derivatives of all three germ layers, whereas differentiation in the PCC4-azal tumours is restricted to the formation of primitive neuronal tissues.  相似文献   

14.
Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.  相似文献   

15.
The patterns of protein synthesis in teratocarcinoma stem cells (embryonal carcinoma cells) and in mouse embryos at various stages of preimplantation development were studied using SDS-polyacrylamide slab gel electrophoresis with autoradiography. Significant differences were observed in comparisons of embryonal carcinoma cells with isolated inner cell masses (ICMs) or with embryonic cells at earlier stages of development. However, no such differences in the overall pattern of protein synthesis were found when the embryonal carcinoma cells were compared with the embryonic ectoderm (that portion of the ICM which remains after endoderm differentiation). Both synthesize at least one prominent 55,000-dalton protein that is not detected in embryonic cells at earlier stages of development. This protein can thus be used as a biochemical marker of ectoderm formation during embryonic development. The pattern of protein synthesis common to embryonal carcinoma cells and embryonic ectoderm is not shared by other cultured cell types.  相似文献   

16.
We document the time of appearance and the levels of two markers of differentiation during the formation of embryoid bodies by two embryonal carcinoma (EC) cell lines. Neither of these markers has been described before for EC cells differentiating in aggregate culture, and they further extend the identification and characterization of new cell types. Both F9 and PC13 EC cell lines form embryoid bodies (so-called because they resemble early mouse embryos) with an outer epithelial layer of visceral endoderm cells, after suspension culture in the presence of retinoic acid. However, the two cell lines differ in the procedures needed to initiate the differentiation process. Once floating aggregate cultures have been formed, the time course of the appearance of epidermal growth factor (EGF) receptors and of the secretion of transferrin are similar in both cell lines, although the levels differ. EGF receptors and transferrin are quantified by 125I-EGF binding assays and enzyme-linked immunosorbent assays (ELISA) using specific antibodies, respectively. The expression of EGF receptors increases about two fold while that of transferrin increases up to 40 fold after treating F9 aggregates with retinoic acid. The EGF receptors reach a maximum 4 days after adding retinoic acid and then decline, while transferrin only increases later from a low but detectable level. For PC13 cells, EGF receptors increase tenfold, and transferrin synthetic rate increases 40 fold during the time-course. Interestingly, unstimulated F9 cells in monolayer cultures also express low levels of these markers, while the levels in PC13 EC cells are barely detectable above background.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We investigated the ability of the teratocarcinoma-derived, epithelial-type cell line 1H5 to differentiate into either of the two pathways to primary endoderm, and tested the hypothesis that 1H5 represents a state similar to primitive endoderm in the late 4th-day blastocyst. Like other endodermal cell types, 1H5 cells mixed with embryonal-carcinoma cells sort out into "embryoid bodies" or structures that resemble 4th-day mouse embryos. The epithelial line conforms morphologically and biochemically to the few known characteristics typical of primitive endoderm. The present study demonstrates that the formation in vitro of overt visceral endoderm is readily achieved. The spontaneous arrangement of the cells into a cystic form is followed by the appearance of several markers of visceral endoderm, most notably alphafetoprotein, which is detected when 1H5 cells are cultured either in the presence of retinoic acid or when the cells interact with embryonal-carcinoma cells in a specific spatial arrangement after sorting out. However, some less specific properties of visceral endoderm are not expressed. Although 1H5 differentiates histologically into parietal-like endoderm in the tumor form, parietal cells cannot yet be identified with certainty in vitro because of the paucity of parietal-specific markers. The 1H5 cell line could provide a useful system for studying the characteristics and mechanisms underlying visceral-endoderm differentiation in vitro, since it has the distinct advantage that homogeneous cultures are produced, in contrast to other teratocarcinoma cell lines such as F9 which differentiate into a mixture of cell types.  相似文献   

18.
Epithelial-to-mesenchymal transitions (EMTs) play key roles in the normal development of an organism as well as its demise following the metastasis of a malignant tumour. An EMT during early mouse development results in the differentiation of primitive endoderm into the parietal endoderm that forms part of the parietal yolk sac. In the embryo, primitive endoderm develops from cells in the inner cell mass, but the signals that instruct these cells to become specified and adopt an epithelial fate are poorly understood. The mouse F9 teratocarcinoma cell line, a model that can recapitulate the in vivo primitive to parietal endoderm EMT, has been used extensively to elucidate the signalling cascades involved in extraembryonic endoderm differentiation. Here, we identified Wnt6 as a gene up-regulated in F9 cells in response to RA and show that Wnt6 expressing cells or cells exposed to Wnt6 conditioned media form primitive endoderm. Wnt6 induction of primitive endoderm is accompanied by beta-catenin and Snail1 translocation to the nucleus and the appearance of cytokeratin intermediate filaments. Attenuating glycogen synthase kinase 3 activity using LiCl gave similar results, but the fact that cells de-differentiate when LiCl is removed reveals that other signalling pathways are required to maintain cells as primitive endoderm. Finally, Wnt6-induced primitive endodermal cells were tested to determine their competency to complete the EMT and differentiate into parietal endoderm. Towards that end, results show that up-regulating protein kinase A activity is sufficient to induce markers of parietal endoderm. Together, these findings indicate that undifferentiated F9 cells are responsive to canonical Wnt signalling, which negatively regulates glycogen synthase kinase 3 activity leading to the epithelialization and specification of primitive endoderm competent to receive additional signals required for EMT. Considering the ability of F9 cells to mimic an in vivo EMT, the identification of this Wnt6-beta-catenin-Snail signalling cascade has broad implications for understanding EMT mechanisms in embryogenesis and metastasis.  相似文献   

19.
F9 embryonal carcinoma cells can differentiate into endoderm-like cells   总被引:10,自引:0,他引:10  
The mouse teratocarcinoma cell line, F9, has been used in many laboratories as the epitome of the “nullipotent” embryonal carcinoma cell line. However, careful inspection of F9 cultures reveals the presence of small numbers of cells which possess several properties of endoderm, particularly parietal endoderm, and which can be shown to derive from the embryonal carcinoma component. Furthermore, tumors of F9 cells include isolated patches of endoderm-like cells surrounded by a thick secretion resembling Reichert's membrane. The proportion of endoderm-like cells in F9 cultures can be increased to varying degrees by causing the cells to form aggregates and/or maintaining them at high density for several days, although the endoderm-like cells produced in these ways contribute very little to the formation of subcutaneous tumors from the resultant mixed cultures. Differentiated cell types other than endoderm are rarely observed in F9 monolayer or aggregate cultures, even after several weeks. Cloning studies support the view that most, if not all, F9 cells can differentiate, albeit at very low incidence.  相似文献   

20.
F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号