首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tektins are composed of a family of filament-forming proteins localized in cilia and flagella. Four types of mammalian Tektins have been reported, and at least two types of Tektins, Tektin2 and Tektin4, have been verified to be present in sperm flagella. A new member of the TEKTIN gene family, which was designated as rat Tektin5, was obtained by PCR technique. Rat Tektin5 cDNA consists of 1,674 bp encoding a 62.8 kDa protein of 558 amino acids. Tektin5 protein contains a Tektin domain as well as a nonapeptide signature sequence that is a prominent feature of Tektin proteins. RT-PCR analysis indicated that Tektin5 was predominantly expressed in testis and that its expression was up-regulated during testis development. Immunoblot analyses revealed that Tektin5 is present in sperm flagella but not in heads and that it is completely released from rat spermatozoa by 6 M urea treatment, but not extracted by 1% Triton X-100 and 0.6 M potassium thiocyanate. Confocal laser scanning microscopy revealed that Tektin5 was located in the middle piece of flagella in rat spermatozoa with no immunolabeling in the heads and the principal piece. Immunogold electron microscopy adopting pre-embedding method discovered that Tektin5 is predominantly associated with the inner side of the mitochondrial sheath. Tektin5 might work as a middle piece component requisite for flagellar stability and sperm motility.  相似文献   

2.
Mammalian sperm flagella have filament‐forming Tektin proteins (Tektin 1–5) reported to be involved in the stability and structural complexity of flagella. Male mice null for Tektin3 produce spermatozoa with reduced forward progression and increased flagellar structural bending defects. The subcellular localization of Tektin3 (TEKT3) in spermatozoa, however, has not been clarified at the ultrastructural level. To elucidate the molecular localization of TEKT3 in flagella of rat spermatozoa, we performed extraction studies followed by immunoblot analysis, immunofluorescence microscopy, and immunogold electron microscopy. Extraction of sperm flagella from the cauda epididymis resulted in complete removal of axonemal tubulins, while TEKT3 was resistant to extraction with the same S‐EDTA (1% SDS, 75 mM NaCl, 24 mM EDTA, pH 7.6) solution, suggesting that TEKT3 might be present in the peri‐axonemal component and not directly associated with axonemal tubulins. Resistance to S‐EDTA extraction might be due to disulfide bond formation during epididymal maturation since concentrations of DTT greater than 5 mM drastically promoted release of TEKT3 from flagella. Immunofluorescence microscopy and pre‐embedding immunoelectron microscopy revealed that TEKT3 was predominantly associated with the surface of mitochondria and outer dense fibers in the middle piece. In addition, TEKT3 was found to be present at the equatorial segment region of the acrosome membrane in sperm heads. TEKT3 might not only work as a flagellar constituent required for flagellar stability and sperm motility but also may be involved in acrosome‐related events, such as the acrosome reaction or sperm–egg fusion. Mol. Reprod. Dev. 78:611–620, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Spetex‐1, which has been isolated by differential display as a haploid spermatid‐specific gene, encodes a protein with two coiled‐coil motifs located in the middle piece of flagella in rodent spermatozoa. The middle piece of flagella is composed of axoneme and peri‐axonemal elements including outer dense fibers (ODFs) and satellite fibrils. Pre‐embedding immunoelectron microscopy clearly demonstrated that Spetex‐1 is located at satellite fibrils associated with ODFs in the middle piece of flagella of rat spermatozoa. Extraction of Spetex‐1 from spermatozoa by SDS or urea required dithiothreitol, suggesting crosslinking by disulfide bond is involved in the assembly of satellite fibrils containing Spetex‐1. We identified putative Spetex‐1 orthologs in many animal species, and both cysteine residues and coiled‐coil motifs were well conserved in mammalian orthologs of Spetex‐1. When Spetex‐1 was co‐transfected into COS‐7 cells with myc‐tagged Tektin4, another filamentous protein associated with ODFs, the two molecules were co‐localized in various sizes of aggregates in the cells. These data suggested that Spetex‐1, a new component of satellite fibrils, might be involved in the structural stability of the sperm flagellar middle piece and functions in co‐operation with Tektin4. Mol. Reprod. Dev. 77: 363–372, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
The centriole is a minute cylindrical organelle present in a wide range of eukaryotic species. Most centrioles have a signature ninefold radial symmetry of microtubules that is imparted to the axonemes of the cilia and flagella they template, with nine centriolar microtubule doublets growing into nine axonemal microtubule doublets. There are exceptions to the ninefold symmetrical arrangement of axonemal microtubules in some species, with lower or higher fold symmetries. In the few cases where this has been examined, such alterations in axonemal symmetries are grounded in similar alterations in centriolar symmetries. Here, we examine the question of microtubule number continuity between centriole and axoneme in flagellated gametes of the gregarine Lecudina tuzetae, which have been reported to exhibit a sixfold radial symmetry of axonemal microtubules. We used time-lapse differential interference microscopy to identify the stage at which flagellated gametes are present. Thereafter, using electron microscopy and ultrastructure-expansion microscopy coupled to stimulated emission depletion superresolution imaging, we uncover that a six- or fivefold radial symmetry in the axoneme is accompanied by an eightfold radial symmetry in the centriole. We conclude that the transition between centriolar and axonemal microtubules can be characterized by unexpected plasticity.  相似文献   

6.
The haploid germ cell-specific Tektin-t protein is a member of the Tektin family of proteins that form filaments in flagellar, ciliary, and axonemal microtubules. To investigate the physiological role of Tektin-t, we generated mice with a mutation in the tektin-t gene. The homozygous mutant males were infertile, while the females were fully fertile. Sperm morphology and function were abnormal, with frequent bending of the sperm flagella and marked defects in motility. In vitro fertilization assays showed that the defective spermatozoa were able to fertilize eggs. Electron microscopic examination showed that the dynein inner arm structure was disrupted in the sperm flagella of tektin-t-deficient mice. Furthermore, homozygous mutant mice had functionally defective tracheal cilia, as evidenced by altered dynein arm morphology. These results indicate that Tektin-t participates in dynein inner arm formation or attachment and that the loss of Tektin-t results in impaired motility of both flagella and cilia. Therefore, the tektin-t gene is one of the causal genes for immotile-cilium syndrome/primary ciliary dyskinesia.  相似文献   

7.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

8.
Tektins are insoluble alpha-helical proteins essential for the construction of cilia and flagella and are found throughout the eukaryotes apart from higher plants. Being almost universal but still fairly free to mutate, their coding sequences have proved useful for estimating the evolutionary relationships between closely related species. Their protein molecular structure, typically consisting of four coiled-coil rod segments connected by linkers, resembles that of intermediate filament (IF) proteins and lamins. Tektins assemble into continuous rods 2 nm in diameter that are probably equivalent to subfilaments of the 10 nm diameter IFs. Tektin and IF rod sequences both have a repeating pattern of charged amino acids superimposed on the seven-amino-acid hydrophobic pattern of coiled-coil proteins. The length of the repeat segment matches that of tubulin subunits, suggesting that tektins and tubulins may have coevolved, and that lamins and IFs may have emerged later as modified forms of tektin. Unlike IFs, tektin sequences include one copy of a conserved peptide of nine amino acids that may bind tubulin. The 2 nm filaments associate closely with tubulin in doublet and triplet microtubules of axonemes and centrioles, respectively, and help to stabilize these structures. Their supply restricts the assembled lengths of cilia and flagella. In doublet microtubules, the 2 nm filaments may also help to organize the longitudinal spacing of accessory structures, such as groups of inner dynein arms and radial spokes.  相似文献   

9.
10.
《The Journal of cell biology》1994,125(6):1313-1326
The kinesin superfamily of mechanochemical proteins has been implicated in a wide variety of cellular processes. We have begun studies of kinesins in the unicellular biflagellate alga, Chlamydomonas reinhardtii. A full-length cDNA, KLP1, has been cloned and sequenced, and found to encode a new member of the kinesin superfamily. An antibody was raised against the nonconserved tail region of the Klp1 protein, and it was used to probe for Klp1 in extracts of isolated flagella and in situ. Immunofluorescence of whole cells indicated that Klp1 was present in both the flagella and cell bodies. In wild-type flagella, Klp1 was found tightly to the axoneme; immunogold labeling of wild-type axonemal whole mounts showed that Klp1 was restricted to one of the two central pair microtubules at the core of the axoneme. Klp1 was absent from the flagella of mutants lacking the central pair microtubules, but was present in mutant flagella from pf16 cells, which contain an unstable C1 microtubule, indicating that Klp1 was bound to the C2 central pair microtubule. Localization of Klp1 to the C2 microtubule was confirmed by immunogold labeling of negatively stained and thin-sectioned axonemes. These findings suggest that Klp1 may play a role in rotation or twisting of the central pair microtubules.  相似文献   

11.
Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella.  相似文献   

12.
Specimens of Pelomyxa palustris from five collecting sites had numerous nonmotile flagella. The structures are called flagella because of morphological similarities to flagella and because P. palustris has affinities with amoeboid flagellates. Flagella were photographed on living cells and studied by transmission and scanning electron microscopy. From 64 to 742 flagella per cell were estimated from scanning electron microscopy of ten cells 204 to 1269 micron in length. The nonmotile flagella arise from basal granules which were, in one strain, surrounded by radiating electron-dense microtubules. This strain also had excess axonemal microtubules. Abundant cytoplasmic microtubules were arranged in several different patterns. In about half of the P. palustris cells in which nuclei were studied, microtubules were either apposed to the nuclear membrane in a parallel alignment (with some also radiating) or radiating from the nuclear membrane (with none parallel). Bacteria associated with nuclei were of three characteristic types: Gram-negative rods, Gram-positive rods, and large rods. All nuclei within a given trophozoite had similar perinuclear features. Recent proposals for separation of Pelomyxa to its own phylum (based on its proposed primitive, unique nature) can not be justified. Pelomyxa is a complex, highly specialized organism adapted to live in a specific fresh-water environment. Mastigamoebid amoeboid flagellates of the genera Mastigamoeba, Mastigella, Mastigina, and possibly Dinamoeba are placed with Pelomyxa within the order Pelobiontida Page, 1976, emend., containing two families. Pelomyxidae Schulze, 1877, and Mastigamoebidae Goldschmidt, 1907.  相似文献   

13.
Using the Lowicryl K4M embedding technique, together with indirect immunoferritin or immunogold labeling on ultra-thin sections, tubulin, calmodulin and phospholipase A2 were distinctly localized in ejaculated bull spermatozoa. Calmodulin was concentrated on the plasma membrane, nucleus, post-acrosomal substance, and, in lesser amounts, between coarse fibers and axonemal microtubules of the flagellum. Phospholipase A2 was distributed evenly along the plasma membrane, nucleus, acrosome, post-acrosomal substance, and in the flagellum, on mitochondria, fibrous sheath, coarse fibers, between coarse fibers and axonemal microtubules. Antibodies to tubulin labeled only axonemal microtubules, including the central pair of microtubules. Patterns of tubulin labeling were identical when ferritin granule- or gold particle-conjugated antibodies were tested. In agreement with our previous biochemical studies demonstrating calmodulin binding to phospholipase A2, concomitant with enhancement of phospholipase A2 activity (Arch Biochem Biophys 241:413, 1985), the overlapping distribution of calmodulin and phospholipase A2 in several parts of the sperm suggests that these proteins may play a concerted role in male gamete function in preparation for or during fertilization. The distinct distribution of tubulin along flagellum microtubules indicates their special function in sperm mobility.  相似文献   

14.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

15.
Spetex-1 has recently been isolated by differential display and screening of cDNA library. It encodes a protein of 556 amino acid residues possessing coiled-coil motifs. In the rat seminiferous tubules (ST), Spetex-1 was expressed in the cytoplasm of elongating spermatids. To examine the subcellular distribution of Spetex-1 in mature spermatozoa, we performed biochemical and immunocytochemical approaches. We found that Spetex-1 that was synthesized in the cytoplasm of elongating spermatids was subsequently integrated as a middle piece component into spermatozoa during spermiogenesis. After integration, the majority of Spetex-1 in spermatozoa could be extracted by 6M urea under reduced condition but not released by the treatment of 1% Triton X-100. Immunoelectron microscopy demonstrated that Spetex-1 seemed to locate at the inner side of outer dense fibers (ODFs) in the middle piece or the narrow space between ODFs and axoneme. Spetex-1 might be involved in the stability of the structural complexity comprising axoneme and ODFs in the middle piece of sperm flagellum.  相似文献   

16.
Ultrastructures spermatozoa taken from the seminiferous tubules of rat testes (Rattus norvegicus) were observed under transmission electron microscopy, using the techniques of ultrathin sections, microspreading specimens and replicas. The heads of isolated spermatozoa were of homogeneously high electron density, and had a slightly curved end; in longitudinal sections these zones were composed of a compact homogeneous DNA, covered by a nuclear envelop, cell membrane and small amounts of acrosomal material. The middle piece contained the modified centrioles in the junction zone and flagella microtubules. In transverse sections as well as in replicas, this region consisted of 10 pairs of microtubules and 9 dense fibers surrounded circularly by the mitochondria (mitochondrial sheath).  相似文献   

17.
Extraction of doublet microtubules from the sperm flagella of the sea urchin Strongylocentrotus purpuratus with sarkosyl (0.5%)-urea (2.5 M) yields a highly pure preparation of "tektin" filaments that we have previously shown to resemble intermediate filament proteins. They form filaments 2-3 nm in diameter as seen by negative stain electron microscopy and are composed of approximately equal amounts of three polypeptide bands with apparent molecular weights of 47,000, 51,000, and 55,000, as determined by SDS PAGE. We prepared antibodies to this set of proteins to localize them in the doublet microtubules of S. purpuratus and other species. Tektins and tubulin were antigenically distinct when tested by immunoblotting with affinity-purified antitektin and antitubulin antibodies. Fixed sperm or axonemes from several different species of sea urchin showed immunofluorescent staining with antitektin antibodies. We also used antibodies coupled to gold spheres to localize the proteins by electron microscopy. Whereas a monoclonal antitubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol. 93:576-582) decorates intact microtubules along their lengths, antitektins labeled only the ends of intact microtubules and sarkosyl-insoluble ribbons. However, if microtubules and ribbons attached to electron microscope grids were first extracted with sarkosyl-urea, the tektin filaments that remain were decorated by antitektin antibodies throughout their length. These results suggest that tektins form integral filaments of flagellar microtubule walls, whose antigenic sites are normally masked, perhaps by the presence of tubulin around them.  相似文献   

18.
Abstract The spermatozoa of some gall-midges (Cecidomyiidae, Lestremiinae), belonging to the tribe Micromyini, were seen to have an axoneme that consists of 10, instead of nine, microtubular doublets surrounding a central cylinder. In some related species within the same tribe the axoneme was found to contain a similar cylinder but to have nine doublets, as in typical flagella, or to have nine doublets and no central structure. These three types of axonemes can be given the shorthand designations “10+cyl”,“9+cyl”, and “9+0”. The tribe Lestremiini is characterized by a giant axoneme having 150 doublets in two rows reversely oriented. Other characteristics of examined spermatozoa are the electron density of the B-tubules of the axoneme, a feature shared by all members of the subfamily Lestremiinae, and the presence of a prominent cytoplasmic droplet containing numerous, regularly spaced microtubules, which is shared by all Micromyidi. These axonemal models are discussed from a phylogenetic point of view.  相似文献   

19.
ABSTRACT Specimens of Pelomyxa palustris from five collecting sites had numerous nonmotile flagella. The structures are called flagella because of morphological similarities to flagella and because P. palustris has affinities with amoeboid flagellates. Flagella were photographed on living cells and studied by transmission and scanning electron microscopy. From 64 to 742 flagella per cell were estimated from scanning electron microscopy of ten cells 204 to 1269 μm in length. The nonmotile flagella arise from basal granules which were, in one strain, surrounded by radiating electron-dense microtubules. This strain also had excess axonemal microtubules. Abundant cytoplasmic microtubules were arranged in several different patterns. In about half of the P. palustris cells in which nuclei were studied, microtubules were either apposed to the nuclear membrane in a parallel alignment (with some also radiating) or radiating from the nuclear membrane (with none parallel). Bacteria associated with nuclei were of three characteristic types: Gram-negative rods, Gram-positive rods, and large rods. All nuclei within a given trophozoite had similar perinuclear features. Recent proposals for separation of Pelomyxa to its own phylum (based on its proposed primitive, unique nature) can not be justified. Pelomyxa is a complex, highly specialized organism adapted to live in a specific fresh-water environment. Mastigamoebid amoeboid flagellates of the genera Mastigamoeba, Mastigella, Mastigina, and possibly Dinamoeba are placed with Pelomyxa within the order Pelobiontida Page, 1976, emend., containing two families. Pelomyxidae Schulze, 1877, and Mastigamoebidae Goldschmidt, 1907.  相似文献   

20.
Summary Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号