首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3' region of the Anabaena variabilis nifD gene contains an 11-kilobase-pair element which is excised from the chromosome during heterocyst differentiation. We have sequenced the recombination sites which border the element in vegetative cells and the rearranged heterocyst sequences. In vegetative cells, the element was flanked by 11-base-pair direct repeats which were identical to the repeats present at the ends of the nifD element in Anabaena sp. strain PCC 7120 (Anabaena strain 7120). Although Anabaena strain 7120 and A. variabilis are quite distinct in many ways, the overall sequence similarity between the two strains for the regions sequenced was 96%. Like the Anabaena strain 7120 element, the A. variabilis element was excised in heterocysts to produce a functional nifD gene and a free circularized element which was neither amplified nor degraded. The Anabaena strain 7120 xisA gene is located at the nifK-proximal end of the nifD element and is required for excision of the element in heterocysts. The A. variabilis element also contained an xisA gene which could complement a defective Anabaena strain 7120 xisA gene. A. variabilis did not contain the equivalent of the Anabaena strain 7120 fdxN 55-kilobase-pair element.  相似文献   

2.
The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications.  相似文献   

3.
4.
Heterocyst-forming filamentous cyanobacteria, such as Anabaena variabilis ATCC 29413, require molybdenum as a component of two essential cofactors for the enzymes nitrate reductase and nitrogenase. A. variabilis efficiently transported (99)Mo (molybdate) at concentrations less than 10(-9) M. Competition experiments with other oxyanions suggested that the molybdate-transport system of A. variabilis also transported tungstate but not vanadate or sulfate. Although tungstate was probably transported, tungsten did not function in place of molybdenum in the Mo-nitrogenase. Transport of (99)Mo required prior starvation of the cells for molybdate, suggesting that the Mo-transport system was repressed by molybdate. Starvation, which required several generations of growth for depletion of molybdate, was enhanced by growth under conditions that required synthesis of nitrate reductase or nitrogenase. These data provide evidence for a molybdate storage system in A. variabilis. NtcA, a regulatory protein that is essential for synthesis of nitrate reductase and nitrogenase, was not required for transport of molybdate. The closely related strain Anabaena sp. PCC 7120 transported (99)Mo in a very similar way to A. variabilis.  相似文献   

5.
Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

6.
T Thiel 《Journal of bacteriology》1993,175(19):6276-6286
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis.  相似文献   

7.
8.
9.
10.
研究鉴定了All0769为鱼腥藻PCC 7120中乙酰辅酶A合成酶,通过CRISPR/Cpf1系统敲除鱼腥藻PCC7120中的乙酰辅酶A合成酶(由all0769编码),探究了乙酰辅酶A合成酶在异形胞分化中的调控机制。结果所示:All0769能在体外反应中催化乙酰辅酶A的生成。在供氮环境下,敲除all0769会影响藻细胞生长速率。而无论环境中是否存在化合氮,Δall0769突变株的乙酰辅酶A和α-酮戊二酸含量均显著减少。在供氮环境下,Δall0769突变株中检测到(26.17±1.55) nmol/mg protein的乙酰辅酶A,而在野生型中检测出(43.04±1.09) nmol/mg的乙酰辅酶A。Δall0769突变株的α-酮戊二酸[(1.41±0.24) nmol/mg protein]低于野生型的α-酮戊二酸[(2.13±0.05) nmol/mg protein]。在缺氮环境下,Δall0769突变株中检测到(10.00±2.81) nmol/mg protein的乙酰辅酶A,而在野生型中检测出(29.82±4.04) nmol/mg protein的乙酰辅酶A。Δall07...  相似文献   

11.
12.
Two sequences with homology to a thioredoxin oligonucleotide probe were detected by Southern blot analysis of Anabaena sp. strain PCC 7120 genomic DNA. One of the sequences was shown to code for a protein with 37% amino acid identity to thioredoxins from Escherichia coli and Anabaena sp. strain PCC 7119. This is in contrast to the usual 50% homology observed among most procaryotic thioredoxins. One gene was identified in a library and was subcloned into a pUC vector and used to transform E. coli strains lacking functional thioredoxin. The Anabaena strain 7120 thioredoxin gene did not complement the trxA mutation in E. coli. Transformed cells were not able to use methionine sulfoxide as a methionine source or support replication of T7 bacteriophage or the filamentous viruses M13 and f1. Sequence analysis of a 720-base-pair TaqI fragment indicated an open reading frame of 115 amino acids. The Anabaena strain 7120 thioredoxin gene was expressed in E. coli, and the protein was purified by assaying for protein disulfide reductase activity, using insulin as a substrate. The Anabaena strain 7120 thioredoxin exhibited the properties of a conventional thioredoxin. It is a small heat-stable redox protein and an efficient protein disulfide reductase. It is not a substrate for E. coli thioredoxin reductase. Chemically reduced Anabaena strain 7120 thioredoxin was able to serve as reducing agent for both E. coli and Anabaena strain 7119 ribonucleotide reductases, although with less efficiency than the homologous counterparts. The Anabaena strain 7120 thioredoxin cross-reacted with polyclonal antibodies to Anabaena strain 7119 thioredoxin. However, this unusual thioredoxin was not detected in extracts of Anabaena strain 7120, and its physiological function is unknown.  相似文献   

13.
14.
N Sato 《Nucleic acids research》1995,23(12):2161-2167
I previously found a cold-regulated RNA-binding protein gene rbpA (now named rbpA1) in Anabaena variabilis M3 [Sato, N. (1994) Plant Mol. Biol. 24, 819-823]. I show here that this gene is a member of a gene family containing at least eight members as evidenced by Southern blot and immunoblot analyses. I have isolated three additional genes (rbpB, rbpC and rbpD) in this family. Of these, rbpB was 100% identical to the rbpB gene of Anabaena 7120 reported previously. Another gene named rbpA in Anabaena 7120 was also found to exist in A.variabilis M3 with identical sequence and named rbpA2. The amino acid sequences of these gene products were highly conserved, except that the RbpD protein lacked glycine-rich C-terminal domain present in all other known members of the gene family. RNA blot and immunoblot analyses showed that the expression of rbpA1, rbpA2, rbpB, rbpC and rbpD, as well as uncloned rbp genes was regulated by cold, though the exact time-course and extent of response to cold were different among these genes. Gel-filtration assay showed that all of the Rbp proteins have higher affinities to poly(G) and poly(U) than to poly(A) and poly(C).  相似文献   

15.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

16.
17.
Two endonucleases, AvaI and AvaII, were isolated from Anabaena variabilis on the basis of their ability to make a limited number of breaks at specific points in bacteriophage lambda DNA. Neither enzyme has cofactor requirements beyond Mg2+. Endonuclease AvaI makes eight breaks in the phage lambda chromosome at which the 5'-terminal sequence is pPy-C-G-N. AvaII endonuclease cuts phage lambda DNA more extensively, yielding fragments with the 5'-terminal sequence G-T-C-N or G-A-C-N. Neither enzyme generates cohesive ends.  相似文献   

18.
In experiments with the K strain of Staphylococcus aureus and the K race of bacteriophage suspended in tryptose phosphate broth and maintained at 42 degrees C. it was found that the presence of 1 M NaCl produced certain drastic changes in the relationship between the host cells and the infecting virus: 1. Staphylococci grown at 42 degrees C. in plain broth or in NaCl-broth are "activated," i.e. when growth is stopped by lowering the temperature to 5 degrees C. and phage is added, the activity titre immediately displays a rise of 15- to 16-fold. 2. 1 M NaCl tends to prevent the sorption of phage by cocci and this effect is more pronounced at 42 degrees C. than at 5 degrees C. When the activation test is conducted at 5 degrees C. (the usual temperature) most of the phage is picked up by the cells and the described increase in activity titre follows. If the test takes place at 42 degrees C. there is little sorption and correspondingly little rise in phage titre. 3. Mixtures of staphylococci and phage incubated at 42 degrees C. in NaCl-broth fail to produce phage; the final plaque and activity titres are identical with the initial titres. Here, also, the influence of 1 M NaCl in preventing contact of phage with cocci appears to account for the results. 4. Similar mixtures held at 42 degrees C. in plain broth exhibit a drop of about 60 per cent in activity and plaque titres. The loss of phage may be due to adsorption on dead cells accumulating in the suspension or to the thermolability of the bacterium-phage complex, or to both.  相似文献   

19.
T R Harrington  B R Glick  N W Lem 《Gene》1986,45(1):113-116
Purified Anabaena variabilis chromosomal DNA was partially digested with restriction endonuclease Sau3A and ligated into the BamHI site of plasmid pBR322. Escherichia coli 342-167, a mutant with a decreased level of phosphoenolpyruvate carboxylase (PEPCase) activity was transformed with plasmids from the A. variabilis genomic library. A transformant that grew on minimal media in the absence of glutamate was isolated and its plasmid, pTRH1, was shown to encode the A. variabilis PEPCase. E. coli HB101 cells transformed with plasmid pTRH1 have approx. 50 times the normal amount of PEPCase activity and also overproduce a protein with the apparent Mr (99,000) of the A. variabilis PEPCase.  相似文献   

20.
We identified the molecular structures of carotenoids in some Anabaena and Nostoc species. The myxoxanthophyll and ketomyxoxanthophyll in Anabaena (also known as Nostoc) sp. PCC 7120, Anabaena variabilis IAM M-3, Nostoc punctiforme PCC 73102 and Nostoc sp. HK-01 were (3R,2'S)-myxol 2'-fucoside and (3S,2'S)-4-ketomyxol 2'-fucoside, respectively. The glycoside moiety of the pigments was fucose, not rhamnose. The major carotenoids were beta-carotene and echinenone, and the minor ones were beta-cryptoxanthin, zeaxanthin, canthaxanthin and 3'-hydroxyechinenone. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, we proposed a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. Since only zeta-carotene desaturase (CrtQ) from Anabaena sp. PCC 7120 and beta-carotene ketolase (CrtW) from N. punctiforme PCC 73102 have been functionally identified, the other genes were searched by sequence homology only from the functionally confirmed genes. Finally, we investigated the phylogenetic relationships among some Anabaena and Nostoc species, including some newly isolated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号