首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在核型分析与染色体识别基础上,分别以番茄45S和5S rDNA为探针,对3种不同地域的乌拉尔甘草进行FISH分析.结果表明:内蒙古鄂托克前旗的乌拉尔甘草核型公式为2n=2x=16=6m+10sm (2SAT),新疆阿勒泰地区的乌拉尔甘草核型公式为2n=2x=16=4m+12sm(2SAT),内蒙古喀喇沁旗乌拉尔甘草核型公式为2n=2x=16=4m+12sm(2SAT);其第8染色体均带有随体.3种乌拉尔甘草基因组内均有1对5S rDNA和1对45S rDNA杂交位点.核型分析显示,5S rDNA杂交位点均位于第2染色体的短臂部位,45S rDNA杂交位点均位于第8染色体的次缢痕和随体部位.45S与5S rDNA在3种乌拉尔甘草中期分裂相上的位点数和分布情况高度一致,表明来自3种不同地域的乌拉尔甘草在染色体结构水平上没有较大的分化.  相似文献   

2.
花生45S rDNA和5S rDNA的染色体定位研究   总被引:1,自引:0,他引:1  
对四粒红和蜀花四号花生材料进行了核型分析,四粒红为2B核型,核型公式为2n=4x=40=38m+2sm(4SAT);蜀花四号为1B核型,核型公式为2n=4x=40=40 m(2SAT)。利用双色荧光原位杂交技术,对45S rDNA和5S rDNA这两个材料有丝分裂中期染色体上的物理位置进行了定位分析。定位结果表明,四粒红有6对45S rDNA位点,位于A2L、A7S、A9L、B3L、B7S、B8L(A和B分别代表基因组A和基因组B,L和S代表长臂和短臂,数字代表染色体序号,下同);2对5S rDNA位点,位于A3S和B3S;蜀花四号有5对45S rDNA位点,位于A2L、A9L、B3L、B7S、B9L;2对5S rDNA位点,位于A3S和B3S。花生的45S rDNA位点具有可变性,5S rDNA则相对保守。  相似文献   

3.
权有娟  李想  袁飞敏  刘博  陈志国 《广西植物》2021,41(12):1988-1995
为精确地识别藜属植物染色体组的核型特征,该文研究了4种来自青海高原的野生藜属植物(灰绿藜、藜、菊叶香藜及杂配藜)和1种从美国引进的栽培藜麦品种PI614932-HX(3)基于染色体荧光原位杂交(rDNA FISH)的核型。利用5S rDNA和45S rDNA对5种藜属植物有丝分裂中期的染色体进行FISH研究。藜属植物的核型分析结果表明:(1)藜属植物中存在二倍体(2n=2x=18)和四倍体(2n=4x=36)两种倍性,藜麦和灰绿藜为四倍体,其余3种为二倍体。(2)藜麦、灰绿藜、藜、菊叶香藜及杂配藜的核型公式分别为2n=4x=36=34m(2AST)+2sm,2n=4x=36=32m(4AST)+4sm,2n=2x=18=16m(4AST)+2sm,2n=2x=18=18m及2n=2x=18=16m+2sm。(3)染色体由大部分的中部着丝粒染色体(m)和少部分近中部着丝粒染色体(sm)组成。(4)核型类型除了菊叶香藜为1B以外,其余均属于2B类型。(5)在藜麦、灰绿藜及藜中具有分布位置不同、数量不等的双随体。5S rDNA、45S rDNA FISH结果表明:(1)藜麦和灰绿藜的染色体上存在2对5S rDNA位点和1对45S rDNA位点,藜、杂配藜的染色体上存在1对5S rDNA位点和1对45S rDNA位点,菊叶香藜的染色体上只存在1对5S rDNA位点。(2)5S rDNA和45S rDNA位点均位于染色体的短臂上。该研究首次获得了藜属植物基于5S rDNA和45S rDNA荧光原位杂交核型,为藜属植物亲缘关系研究和细胞生物学研究提供了分子细胞遗传学依据。  相似文献   

4.
植物45S rDNA的染色体位置的CPD染色和FISH分析   总被引:3,自引:0,他引:3  
佘朝文  宋运淳 《广西植物》2008,28(4):515-520
采用PI和DAPI组合(CPD)染色结合45SrDNA探针的荧光原位杂交(FISH)对分属6个科的16种植物的45S rDNA的染色体位置进行了分析。在所有供试植物中,共检测到53个45S rDNA位点。大多数45S rDNA位点分布在染色体的短臂;位于染色体臂内和染色体末端的位点的比例大体相当;多数位于染色体臂内的45S rDNA位点有次缢痕形成,但rDNA重复单位簇所处的位置存在差异。根据45S rDNA所处的染色体臂的不同、距着丝粒远近的差异、形成次缢痕与否以及rDNA重复单位簇相对于次缢痕的位置等特征,将植物的45S rDNA位点划分为12种染色体分布类型。基于我们的结果和其他的报道对45S rDNA位点、核仁组织区(NOR)、次缢痕和随体相互之间的关系进行了分析。  相似文献   

5.
星丽鱼和天使鱼的核型及银染和C带   总被引:8,自引:0,他引:8  
以肾细胞作材料,采用秋水仙素-低渗-空气干燥法、Howell的方法(银染)和Sumner的方法(C带),制作染色体标本。报道了星丽鱼(Astronotus ocellatus)、天使鱼(Pterophyllum scalare)的核型及银染和C带。结果显示,这两种热带淡水观赏鱼的2n均为48。星丽鱼的核型公式为2n=2m+26sm+16st+4t,NF=76,其染色体经快速银染后表明,在sm1的随体上出现银染位点;多数染色体的着丝点区均显示出一个深浅不同的C带,随体所在位置均深染。天使鱼具有异形性染色体,其核型公式为♀:2n=4m(X)+12sm+12st+20t,NF=64;♂:2n=3m(x)+12sm+12st+21t(Y),NF=63。银染点位于sm3的短臂末端和X染色体的短臂末端;多数染色体为着丝粒C带。在两种鱼中均未见到Ag-NORs联合现象。  相似文献   

6.
针对眼斑拟石首鱼Sciaenops ocellatus染色体标记匮乏的问题, 利用荧光原位杂交(FISH)定位了眼斑拟石首鱼的18S rDNA、5S rDNA和端粒序列。结果显示, 眼斑拟石首鱼的核型公式为2n=48t; 仅有1对18S rDNA位点, 位于第1对染色体的次缢痕部位; 有2对5S rDNA位点, FISH信号强度不等, 强信号位于第8对染色体的近着丝粒端, 弱信号位于第3对染色体的臂间。端粒FISH信号出现于所有染色体的两端, 但表现出染色体两端信号不平衡的特点, 着丝粒端FISH信号明显强于远端信号。这一特点为判定染色体的方向提供了便利。结合其他石首鱼的核型数据可以推断, 2n=48t的核型及单对近着丝粒分布的18S rDNA位点是石首鱼的共同祖征; 在石首鱼进化过程中, 曾发生活跃但不影响宏观核型的小规模重排。研究结果丰富了眼斑拟石首鱼染色体的辨识标记, 并为研究石首鱼染色体进化提供了基础数据。  相似文献   

7.
薏苡45S和5S rDNA的染色体定位研究(简报)   总被引:1,自引:0,他引:1  
通过荧光原位杂交的方法确定了45S和5S正NA序列在薏苡前中期染色体上的位置.尽管具有20条染色体的薏苡是四倍体植物,但它的基因组中只有一个45S和5S rDNA位点.根据薏苡前中期染色体的核型,确定45S rDNA序列位于薏苡第2号染色体短臂上的次级缢痕区和随体上,5S rDNA序列位于第7号染色体长臂靠近着丝粒处,5S rDNA位点到着丝粒的百分距离是29.13±1.76.  相似文献   

8.
45S rDNA在小麦及其近缘物种染色体上的分布   总被引:5,自引:0,他引:5  
徐川梅  别同德  王春梅  周波  陈佩度 《遗传》2007,29(9):1126-1130
将染色体C-分带和原位杂交技术相结合,系统研究了45S rDNA在栽培一粒小麦、野生二粒小麦、普通小麦、大麦、簇毛麦、硬簇麦、六倍体燕麦及鹅观草等物种染色体上的分布情况。这些物种染色体的次缢痕区都有45S rDNA位点, 某些非随体染色体上也有45S rDNA位点分布。以小麦—鹅观草1Rk#1二体附加系为材料,通过顺序C分带-FISH技术首次将一个45S rDNA定位到1Rk#1染色体短臂末端。  相似文献   

9.
青海四种雏蝗染色体核型的比较分析   总被引:1,自引:0,他引:1  
严林 《昆虫知识》2001,38(4):286-290
采用常规染色体制片方法对雏蝗属的褐色雏蝗Chorthippusbrunneus(Thunb .) ,异色雏蝗C .big uttulus(Linnaeus) ,小翅雏蝗C .fallax(Zub .) ,青藏雏蝗C .qingzangensis(Ying)的染色体核型进行分析 ,结果 :染色体数目均为 2n(♂ ) =1 7=1 6+XO ;常染色体类型为两类 ,中着丝点染色体 (m ,6条 )和端着丝点染色体 (T ,1 0条 ) ;性染色体类型为端着丝点。褐色雏蝗、异色雏蝗和青藏雏蝗的核型公式和染色体的相对长度组成为K( 2n ,♂ ) =1 7=6m +1 1T =6L +6M +4S +XO ,K( 2n ,♀ ) =1 8=6m +1 2T =6L +6M +4S +XX ;小翅雏蝗的为K( 2n,♂ ) =1 7=6m +1 1T =6L +4M +6S +XO ,K( 2n ,♀ ) =1 8=6m +1 2T =6L +4M +6S+XX。褐色雏蝗性染色体中部有次缢痕。染色体臂数 4种均为NF =2 3(♂ ) ,2 4 (♀ )。  相似文献   

10.
中国海南岛13种菊科植物的细胞学研究   总被引:7,自引:0,他引:7  
对海南岛13种菊科植物进行了染色体研究,对其中9种植物进行了核型分析,结果为: 树菊Tithoni-a diversifolia A.Gray,2n=34=26m+8sm(2sat);鳢肠Eclipta prostrata(L.)L.,2n=22=18m+4sm;金腰箭Synedrella nodiflora(L.)Gaertn.,2n=40=6m+30sm(2sat)+4st;三叶鬼针草黄花类型Bidens pilosa L.(yel-low flower),2n=72=46m+26sm(2sat);羽  相似文献   

11.
18-26S rDNA loci were mapped on chromosomes in four species of Par is,and the num-ber and position of rDNA sites in these species were compared f or analysis of the distribution of the sites. All the plants were diploids,and t he genome consisted of five chromosomes,A,B,C,D and E. (1)P. polyphylla var. yunnanensis,2n=10=6m+4t. Two18-26S rDNA loci were de-tected on the short arms o f C and D chromosomes;(2)P. forrestii,2n=10=6m+4t. One locus was detected on th e long arm of B chromosome,and also two loci on the short arms of C and D chromosomes;(3)P. axialis. 2n=10=6m(2sat)+4t(2sat)+1-2B. Two loci were detected o n the short arms of C and D chromosomes. One locus was detected in the cell with t wo B-chromosomes(B),but none was detected in that with only one B chromosome, indicating that rRNA gene existed on B chromsome,and an unequal division occurr ed during mitotic cycle of B-chromosomes. (4)P. daliensis,2n=10=4m+2sm+2st+2t. O ne locus was detected on the short arm of D chromo-some. The signals of18-26S rD NA appeared not only in the second constriction but also in the other regions of chromosome. It is noteworthy that one locus was detected in the terminal region o n the short arm of C chromosome in all the four species studied.  相似文献   

12.
The genomic constitution of Aegilops cylindrica Host (2n = 4x = 28, DcDcCcCc) was analyzed by C-banding, genomic in situ hybridization (GISH), and fluorescence in situ hybridization (FISH) using the DNA clones pSc119, pAs1, pTa71, and pTA794. The C-banding patterns of the Dc- and Cc-genome chromosomes of Ae. cylindrica are similar to those of D-and C-genome chromosomes of the diploid progenitor species Ae. tauschii Coss. and Ae. caudata L., respectively. These similarities permitted the genome allocation and identification of the homoeologous relationships of the Ae. cylindrica chromosomes. FISH analysis detected one major 18S-5.8S-25S rDNA locus in the short arm of chromosome 1Cc. Minor 18S-5.8S-25S rDNA loci were mapped in the short arms of 5Dc and 5Cc. 5S rDNA loci were identified in the short arm of chromosomes 1Cc, 5Dc, 5Cc, and 1Dc. GISH analysis detected intergenomic translocation in three of the five Ae. cylindrica accessions. The breakpoints in all translocations were non-centromeric with similar-sized segment exchanges.  相似文献   

13.
Dual-color fluorescence in situ hybridization (FISH) analysis of three Cucurbitaceae species from different genera was conducted using 5S and 45S rDNA probes. In Benincasa hispida (Thunb.) Cogn. (2n=24), the 45S rDNA probe hybridized on two chromosomes, one in the short arm of a medium-sized metacentric chromosome and another at the satellite of a chromosome. The 5S rDNA hybridized at a site proximal to the centromere of the same short arm of the 45S rRNA gene locus that occupied almost the entire short arm. For Citrullus lanatus (Thunb.) Matsum & Nakai (2n=22), the 45S rDNA probe hybridized at sites in the short arms of two chromosomes and the 5S rDNA probe was co-localized with the 45S rRNA locus at the region proximal to the centromere in one chromosome. The 45S rRNA loci occupied almost all of the short arms in both chromosomes. In Cucurbita moschata Duch. (2n=40), the 45S rDNA probe hybridized in five chromosomes in which the 45S rRNA genes occupied almost two-thirds of the chromosomes in two large chromosomes and the entire short arm of a medium-sized chromosome. Two other loci were present in two medium-sized chromosomes, one in the proximal region in the short arm of a chromosome and another at the tip of the long arm of a chromosome. Chromosomes of B. hispida were relatively larger than those of the other two species. The karyotype of B. hispida is composed of two metacentrics and 10 submetacentrics, while that of C. lanatus is composed of seven metacentrics and four submetacentrics and that of C. moschata is composed of 18 metacentrics and two submetacentrics. Comparative chromosome evolution among the three Cucurbitaceae species was attempted using the karyotypes and the chromosomal distribution patterns of the 5S and 45S rDNAs. The results presented herein will be useful in elucidating the phylogenetic relationships among Cucurbitaceae species, and will provide basic data for their breeding programs.  相似文献   

14.
The experiment on individual chromosome assignments and chromosomal diversity was conducted using a multi-probe fluorescence in situ hybridization (FISH) system in D subgenome of tetraploid Gossypium barbadense (D(b)), G. thurberi (D(1)) and G. trilobum (D(8)), which the later two were the possible subgenome donors of tetraploid cottons. The FISH probes contained a set of bacterial artificial chromosome (BAC) clones specific to 13 individual chromosomes from D subgenome of G. hirsutum (D(h)), a D genome centromere-specific BAC clone 150D24, 45S and 5S ribosomal DNA (rDNA) clones, respectively. All tested chromosome orientations were confirmed by the centromere-specific BAC probe. In D(1) and D(8), four 45S rDNA loci were found assigning at the end of the short arm of chromosomes 03, 07, 09 and 11, while one 5S rDNA locus was successfully marked at pericentromeric region of the short arm of chromosome 09. In D(b), three 45S rDNA loci and two 5S rDNA loci were found out. Among them, two 45S rDNA loci were located at the terminal of the short arm of chromosomes D(b)07 and D(b)09, whilst one 5S rDNA locus was found situating near centromeric region of the short arm of chromosome D(b)09. The positions of the BAC clones specific to the 13 individual chromosomes from D(h) were compared between D(1), D(8) and D(b). The result showed the existence of chromosomal collinearity within D(1) and D(8), and as well between them and D(b). The results will serve as a base for understanding chromosome structure of cotton and polyploidy evolution of cotton genome and will provide bio-information for assembling the sequences of finished and the on-going cotton whole genome sequencing projects.  相似文献   

15.
High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A3-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.  相似文献   

16.
蜘蛛抱蛋属的细胞分类学研究Ⅱ   总被引:13,自引:2,他引:11  
文章报道了13种蜘蛛抱蛋属植物的染色体核型,并对属内核型进化规律作了总结。作者认为随体染色体和第1对染色体可以作为本属核型的特征染色体。染色体数目变异与花部式样密切相关。本属植物原始的染色体基数为x=19。此外,对非整倍性变异的主要机制也进行了讨论。  相似文献   

17.
The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O. grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed.  相似文献   

18.
Physical mapping of the 5S and 45S rDNA in teosintes   总被引:1,自引:0,他引:1  
Han YH  Li LJ  Song YC  Li ZY  Xiong ZY  Li DY 《Hereditas》2002,137(1):16-19
The physical locations of the 5S and 45S rDNA sequences were examined in three types of teosinte, Zea mays ssp. mexicana (2n = 20), Zea diploperennis (2n = 20) and Zea perennis (2n = 40) by biotinylated fluorescence in situ hybridization (FISH). The tested materials only showed one hybridization site of 5S rDNA on their genomes, but they were different in the position of the signals. The hybridization site of Zea mays ssp. mexicana was located on the long arm of chromosome 2, indicating that it is the same as the cultivated maize in the position of 5S rDNA, while the sites of Zea diploperennis and Zea perennis were on the short arms of other chromosomes. For 45S rDNA, one hybridization site was detected at secondary constriction region of the satellite chromosomes in Zea mays ssp. mexicana and Zea diploperennis, while in Zea perennis, besides the site located at the secondary constriction region, a second site on the short arm of another chromosome pair was observed. Our results provide additional evidence for Zea mays ssp. mexicana being a subspecies of Zea mays.  相似文献   

19.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号