首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.  相似文献   

2.
3.
4.
5.
Lipopolysaccharide (LPS) is a potent activator of tumor necrosis factor-alpha (TNF-alpha) production by macrophages. LPS stimulates the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and increases TNF-alpha mRNA and protein accumulation in RAW 264.7 murine macrophages. However, the role of ERK1/2 activation in mediating LPS-stimulated TNF-alpha production is not well understood. Inhibition of ERK1/2 activation with PD-98059 or overexpression of dominant negative ERK1/2 decreased LPS-induced TNF-alpha mRNA quantity. LPS rapidly increased early growth response factor (Egr)-1 binding to the TNF-alpha promoter; this response was blunted in cells treated with PD-98059 or transfected with dominant-negative ERK1/2. Using a chloramphenicol acetyltransferase reporter gene linked to the Egr-1 promoter, we show that LPS increased Egr-1 promoter activity via an ERK1/2-dependent mechanism. These results delineate the role of ERK1/2 activation of Egr-1 activity in mediating LPS-induced increases in TNF-alpha mRNA expression in macrophages.  相似文献   

6.
Iron exacerbates various types of liver injury in which nuclear factor (NF)-kappaB-driven genes are implicated. This study tested a hypothesis that iron directly elicits the signaling required for activation of NF-kappaB and stimulation of tumor necrosis factor (TNF)-alpha gene expression in Kupffer cells. Addition of Fe2+ but not Fe3+ (approximately 5-50 microM) to cultured rat Kupffer cells increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Cu+ but not Cu2+ stimulated TNF-alpha protein release and promoter activity but with less potency. Fe2+ caused a disappearance of the cytosolic inhibitor kappaBalpha, a concomitant increase in nuclear p65 protein, and increased DNA binding of p50/p50 and p65/p50 without affecting activator protein-1 binding. Addition of Fe2+ to the cells resulted in an increase in electron paramagnetic resonance-detectable.OH peaking at 15 min, preceding activation of NF-kappaB but coinciding with activation of inhibitor kappaB kinase (IKK) but not c-Jun NH2-terminal kinase. In conclusion, Fe2+ serves as a direct agonist to activate IKK, NF-kappaB, and TNF-alpha promoter activity and to induce the release of TNF-alpha protein by cultured Kupffer cells in a redox status-dependent manner. We propose that this finding offers a molecular basis for iron-mediated accentuation of TNF-alpha-dependent liver injury.  相似文献   

7.
8.
Adiponectin is an adipokine with potent anti-inflammatory properties. However, the mechanisms by which adiponectin suppresses macrophage function are not well understood. Treatment of RAW264.7 macrophages with adiponectin for 18 h decreased lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-alpha) production. Here we demonstrate that globular adiponectin (gAcrp) initially increased TNF-alpha expression in RAW264.7 macrophages; this TNF-alpha then contributed to increased expression of interleukin-10, which in turn was required for the development of tolerance to subsequent LPS exposure. gAcrp-mediated increases in TNF-alpha mRNA accumulation were associated with increased TNF-alpha promoter activity. gAcrp increased the DNA binding activity of both Egr-1 and NFkappaB; mutation of either the Egr-1 or NFkappaB binding sites in the TNF-alpha promoter decreased gAcrp-stimulated promoter activity. Further, co-transfection with either dominant negative Egr-1 or the IkappaB super-repressor prevented gAcrp-stimulated TNF-alpha promoter activity. gAcrp also increased Egr-1 promoter activity, mRNA accumulation, and DNA binding activity. Inhibition of ERK1/2 with U0126 potently suppressed gAcrp-stimulated Egr-1 promoter activity, as well as TNF-alpha promoter activity. In summary, these data demonstrate that adiponectin initially increases TNF-alpha production by macrophages via ERK1/2-->Egr-1 and NFkappaB-dependent mechanisms; these increases in TNF-alpha in turn lead to increased expression of interleukin-10 and an eventual dampening of LPS-mediated cytokine production in macrophages.  相似文献   

9.
10.
11.
12.
13.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

14.
Complement factor B (Bf) plays an important role in activating the alternative complement pathway. The inflammatory cytokines, in particular TNF-alpha and IFN-gamma, are critical in the regulation of Bf gene expression in macrophages. In this study, we investigated the mechanisms of Bf gene regulation by TNF-alpha and IFN-gamma in murine macrophages. Northern analysis revealed that Bf mRNA expression was synergistically up-regulated by TNF-alpha and IFN-gamma in MH-S cells. Truncations of the 5' Bf promoter identified a region between -556 and -282 bp that mediated TNF-alpha responsiveness as well as the synergistic effect of TNF-alpha and IFN-gamma on Bf expression. Site-directed mutagenesis of a NF-kappaB-binding element in this region (-433 to -423 bp) abrogated TNF-alpha responsiveness and decreased the synergistic effect of TNF-alpha and IFN-gamma on Bf expression. EMSAs revealed nuclear protein binding to this NF-kappaB cis-binding element on TNF-alpha stimulation. Supershift analysis revealed that both p50 and p65 proteins contribute to induction of Bf by TNF-alpha. An I-kappaB dominant negative mutant blocked Bf induction by TNF-alpha and reduced the synergistic induction by TNF-alpha and IFN-gamma. In addition, the proteasome inhibitor MG132, which blocks NF-kappaB induction, blocked TNF-alpha-induced Bf promoter activity and the synergistic induction of Bf promoter activity by TNF-alpha and IFN-gamma. LPS was found to induce Bf promoter activity through the same NF-kappaB cis-binding site. These findings suggest that a NF-kappaB cis-binding site between -433 and -423 bp is required for TNF-alpha responsiveness and for TNF-alpha- and IFN-gamma-stimulated synergistic responsiveness of the Bf gene.  相似文献   

15.
Transporter associated with Ag processing 1 and low molecular mass polypeptide 2 (LMP2) are essential for class I MHC function and share a common bidirectional promoter. In murine bone marrow-derived macrophages, LPS and TNF-alpha induced Tap1 and up-regulated Lmp2, which is constitutively expressed at low levels. These two genes are induced by LPS and TNF-alpha with distinct kinetics, at 6 and 12-24 h, respectively. Using macrophages derived from the TNF-alpha receptors of knockout mice, we found that induction by LPS is not due to the autocrine production of TNF-alpha. In macrophages from STAT-1 knockout mice, neither LPS nor TNF-alpha induced the expression of Tap1 or Lmp2. The shared promoter contains several areas that can be controlled by STAT-1, such as the proximal and distal IFN-gamma activation site (GAS) boxes in the direction of the Tap1 gene. By making deletions of the promoter, we determined that only the proximal GAS box is required for LPS induction of Tap1 and Lmp2. In contrast, TNF-alpha induction of these two genes is dependent on the IFN regulatory factor-1 and NF-kappaB boxes, and not on the GAS box. Our experiments using gel shift analysis and Abs indicated that STAT1 binds to the GAS box in nuclear extracts from LPS-treated macrophages. The nuclear extracts obtained from macrophages treated with TNF-alpha bound to the IFN regulatory factor-1 and NF-kappaB boxes. These results show that LPS and TNF-alpha regulate the induction of Tap1 and Lmp2 through STAT1, but use distinct areas of the promoter.  相似文献   

16.
17.
Sano C  Shimizu T  Tomioka H 《Cytokine》2003,21(1):38-42
It has been reported that lipopolysaccharide (LPS)-hyporesponsiveness of macrophages (Mphis) of C3H/HeJ mice with a mutated Lps gene (Lps(d)) is related to high-level expression of secretory leukocyte protease inhibitor (SLPI) in response to LPS, causing suppression of NF-kappaB activation and tumor necrosis factor-alpha (TNF-alpha) production. We thus examined the effects of SLPI on the TNF-alpha production by LPS-stimulated Mphis. Neither intact SLPI nor half-sized SLPI (1/2 SLPI) down-regulated Mphi TNF-alpha production. 1/2 SLPI weakly increased Mphi TNF-alpha production in response to LPS signaling and potentiated the LPS-induced activation of NF-kappaB, especially the binding of p65-p50 heterodimers to the DNA kappaB sites, suggesting that LPS-hyporesponsiveness of Lps(d) Mphis is not due to the overexpression of SLPI.  相似文献   

18.
The lung collectin surfactant protein A (SP-A) has been implicated in the regulation of pulmonary host defense and inflammation. Zymosan induces proinflammatory cytokines in immune cells. Toll-like receptor (TLR)2 has been shown to be involved in zymosan-induced signaling. We first investigated the interaction of TLR2 with zymosan. Zymosan cosedimented the soluble form of rTLR2 possessing the putative extracellular domain (sTLR2). sTLR2 directly bound to zymosan with an apparent binding constant of 48 nM. We next examined whether SP-A modulated zymosan-induced cellular responses. SP-A significantly attenuated zymosan-induced TNF-alpha secretion in RAW264.7 cells and alveolar macrophages in a concentration-dependent manner. Although zymosan failed to cosediment SP-A, SP-A significantly reduced zymosan-elicited NF-kappaB activation in TLR2-transfected human embryonic kidney 293 cells. Because we have shown that SP-A binds to sTLR2, we also examined whether SP-A affected the binding of sTLR2 to zymosan. SP-A significantly attenuated the direct binding of sTLR2 to zymosan in a concentration-dependent fashion. From these results, we conclude that 1) TLR2 directly binds zymosan, 2) SP-A can alter zymosan-TLR2 interaction, and 3) SP-A down-regulates TLR2-mediated signaling and TNF-alpha secretion stimulated by zymosan. This study supports an important role of SP-A in controlling pulmonary inflammation caused by microbial pathogens.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号