共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in phosphorus content of two aquatic macrophytes according to water velocity,trophic status and time period in hardwater streams 总被引:4,自引:0,他引:4
Virginie Baldy Michèle Trémolières Muriel Andrieu Jacques Belliard 《Hydrobiologia》2007,575(1):343-351
We examined the influence of water velocity, trophic status, and time period on the phosphorus content of two aquatic macrophytes.
We sampled Berula erecta (Huds.) and Callitriche obtusangula (Le Gall.) from 17 oligosaprobic hardwater streams in the Alsatian Rhine floodplain of northeastern France. Sampling was
conducted on a monthly basis during a 9-month period from August 1996 to April 1997. For B. erecta, phosphorus content of shoots and roots were correlated to water phosphorus content but not to sediment phosphorus content.
The range of phosphorus shoot content of C. obtusangula was similar to that of B. erecta. Phosphorus shoot content of C. obtusangula was not correlated with water and sediment phosphorus content. In one stream where both species were present on the same
sampling dates, shoot phosphorus content decreased when water velocity was high, particularly for C. obtusangula. Additionally, a significant effect of time period was observed for both species when the water velocities were low. The effect
of water velocity was only significant from spring (April) to autumn (October) when plant phosphorus content was highest.
Handling editor: S. Magela Thomaz 相似文献
3.
抚仙湖不同类型岸带沉水植物分布及水体氮磷特征 总被引:3,自引:0,他引:3
2005年6-7月,通过野外断面采样并结合水质分析,对抚仙湖不同类型岸带沉水植物分布及水体氮磷特征进行了调查.结果表明:抚仙湖岸带分为4个类型,岩石陡峭岸带、冲积平缓岸带、河口岸带以及湖湾岸带;沉水植物种类分布最多出现在河口型岸带和湖湾岸带,均为9种;最低出现在岩石陡峭岸带,为5种;沉水植物生物量最高出现在冲积平缓岸带,为8 300 g·m-2,最低出现在岩石陡峭岸带,为2416 g·m-2;沉水植物分布最深为A1岩石陡峭岸带,平均水深8.5 m,最深达到11.0 m;最浅为B2冲积平缓岸带,平均水深1.9 m,最深为6 m;岸带水体综合氮磷指标,以D2湖湾岸带最高,总氮、总磷分别达到5.34和0.145 mg·L-;最低为A2岩石陡峭岸带,总氮、总磷分别为0.87和0.015 mg·L-1抚仙湖沉水植物对水体氮磷的吸收固定总量约为总氮为5.28×104 kg,总磷为7 500 kg. 相似文献
4.
用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染 总被引:33,自引:1,他引:33
依据湖泊中不同生态类型水生高等植物的微生境特点,设计建造了由漂浮、浮叶、沉水植物为优势种的斑块小群丛构成的镶嵌组合水生植物群落(MosaicCommunityofMacrophytes:MCM),并在太湖五里湖一湖湾内以动态模拟试验,从群落水平研究了水生高等植物群落对富营养化湖泊饮用水源区湖水的净化能力。结果表明,富营养化湖水经MCM净化后,藻类生物量(以Chla计)下降577%,藻类数量下降2~3个数量级,氨氮下降667%,总氮下降600%,水质得到明显改善。与以该湖湾湖水为水源的水厂出水相比,经MCM净化的湖水其氨氮比水厂出水的氨氮平均低451%,总氮低373%,可见经MCM净化的湖水部分指标优于同源的自来水。综合群落的微生境特征及水生高等植物群落内硝化反硝化细菌分布特点,探讨了MCM的除氮机理。 相似文献
5.
Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes 总被引:2,自引:0,他引:2
Takamura Noriko Kadono Yasuro Fukushima Michio Nakagawa Megumi Kim Baik-H. O. 《Ecological Research》2003,18(4):381-395
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP. 相似文献
6.
东太湖水生植物群落结构的演变及其沼泽化 总被引:35,自引:7,他引:35
2002年东太湖水生植被调查结果表明,沉水植被和浮叶植被是该湖水生植被的主要生态类型,分布面积分别占全湖总面积73.6%和18.3%。东太湖水生植被主要有9个群丛,其中沉水植被主要的5个群丛是伊乐藻(外来种)群丛、金鱼藻群丛、伊乐藻 微齿眼子菜群丛、菜-伊乐藻 微齿眼子菜群丛、苦草 竹叶眼子菜 黑藻群丛,其分布面积分别占东太湖植被总面积的30.7%、17.2%、16.7%、15.8%、9.3%。随着对东太湖的不断改造和资源的不断利用,20世纪60年代东太湖人工种植沼泽植被菰群丛,20世纪80年代初环湖水陆交错带被围垦而芦苇群丛消失,微齿眼子菜替代竹叶眼子菜而占据东太湖40%的水面。近10a来,东太湖网围养蟹迅速发展,占全湖总植被面积25.6%的沼泽植物——菰群丛及其占40%的微齿眼子菜群丛被清除,外来种伊乐藻和无根植物金鱼藻分布面积达90%的湖区。东太湖水生植被由20世纪50年代的原生演替到现在的次生演替,群落演变激烈,同时东太湖沼泽化进程加剧。 相似文献
7.
西太湖水生植物时空变化 总被引:37,自引:3,他引:37
水生植物在浅水湖泊生态系统中具有十分重要的作用。根据中国科学院太湖湖泊生态系统研究站1989年以来的常规监测资料,将西太湖(除东太湖以外的湖区)划分为9个区,采用点截法(point intercept method),于2002~2005年对各区水生植物的种类、生物量和空间分布情况进行了6次调查。结果表明:西太湖现有水生植物16种,分属于11科12属;水生植物总面积约10220hm^2,其中沉水植物分布面积约占64.58%;挺水植物约占0.29%;漂浮植物约占38.16%。各个种之间生物量差异显著,马来眼子菜、荇菜、芦苇的生物量在所有水生植物中居前3位。多样性分析表明,水生植物种类4a来未发生明显变化,但种类和生物量季节性差异较大。水生植物呈环状分布在距湖岸5km以内的水域和部分岛屿周围,东岸和南岸为水生植物的主要集中分布区域,分布区连续性好,且水草种类齐全。挺水植物种类单一,仅有芦苇(Phragmites communis)一种,分布区域多限于水深小于1.6m的湖岸;沉水植物共有8种,为水生植物的主要组成部分,马来眼子菜(Potamogeton malaianus)的分布频度最高,在西山岛周围水域逐年扩张,成为该区域的先锋种;漂浮植物3种,主要以荇菜(Nymphoides peltata)为主,在七都水域有逐渐扩张的趋势。马来眼子菜、芦苇、荇菜表现出对水环境较强的适应能力,目前为西太湖的3个优势种。20世纪50年代以来,西太湖水生植物种类减少了50种,其中水质下降是导致水生植物种类不断减少甚至消失的一个重要原因。围网养殖和不合理的捕捞方式也对局部水域的植物造成极大的破坏。水生植物生存环境日益严峻,种群单一化趋势日益明显。 相似文献
8.
The effects of lime addition on aquatic macrophytes in hard water: in situ and microcosm experiments 总被引:1,自引:0,他引:1
Patricia A. Chambers Ellie E. Prepas Mary E. Ferguson Mark Serediak Martha Guy & Meike Holst 《Freshwater Biology》2001,46(8):1121-1138
1. Aquatic macrophytes are abundant in ponds and canals that are constructed in semi‐arid regions for water storage and conveyance, as well as in lakes that are culturally enriched. 2. Addition of Ca(OH)2 to two hardwater ponds at 250 or 275 mg L–1 caused an immediate eradication of submersed aquatic plants. Although these ponds are well‐buffered (alkalinity: 2.57–3.94 mequiv L–1; pH: 8.1–9.0), lime addition caused an immediate increase in pH of 0.2–3 units. 3. Application of 135 mg L–1 Ca(OH)2 for 24 h or 210 mg L–1 Ca(OH)2 for 65 h to two irrigation canals had no effect on macrophyte biomass at the lower concentration and duration, but resulted in the elimination of aquatic macrophytes 1 month after the higher concentration, longer duration treatment. 4. Unlike the macrophyte control achieved following application of 210–275 mg L–1 Ca(OH)2 to ponds or canals, microcosm experiments in which lime formulation [slaked lime (Ca(OH)2), calcite (CaCO3), or a 1 : 1 mixture] and concentrations (up to 1500 mg L–1) were manipulated failed to elicit a consistent change in macrophyte biomass. Macrophytes in microcosms treated for the short‐term (23–33 days) with ≥ 200 mg L–1 Ca(OH)2 or a mixed Ca(OH)2/CaCO3 formulation always lost pigmentation, but biomass was not consistently reduced. 5. Declines in macrophyte biomass following treatment of ponds and canals may have been triggered by a short‐term rise in pH which, in these relatively warm (22–23 °C) alkaline (2.28–3.94 mequiv L–1) systems, would have resulted in low concentrations of free CO2 and bicarbonate for photosynthesis. 相似文献
9.
Bird abundance and species richness on Florida lakes: influence of trophic status,lake morphology,and aquatic macrophytes 总被引:3,自引:0,他引:3
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris). 相似文献
10.
Thomas M. Frost 《Hydrobiologia》1976,50(2):145-149
The aufwuchs of the epithelium of the freshwater sponge Spongilla lacustris was examined and compared qualitatively and quantitatively with that on three plant substrates common to its habitat: Nymphea odorata, Nuphar advena and Utricularia spp. Estimations of the percentage surface area with attached forms and the number of attached green algal filaments yielded significantly lower values for the sponge. Two theories explaining the mechanism effecting this reduced amount of aufwuchs are discussed. 相似文献
11.
Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes 总被引:3,自引:0,他引:3
The effects of flow velocities on dark respiration and net photosynthesis of eight submerged stream macrophytes were examined in a laboratory oxygen chamber. The shoots/leaves were exposed to saturating free-CO2 concentrations and were attached basally so that they could move in the flowing water. Net photosynthesis declined by 34–61% as flow velocity increased from 1 to 8.6cm s?1, while dark respiration increased 2.4-fold over the same range. The increase in dark respiration could only account for between 19 and 67% of the decrease in net photosynthesis. The relationship between flow velocity (U) and net photosynthesis (P) was described by: P=b×Ua. The exponent, a, varied from -0.20 to –0.48 and showed a negative correlation to the surface: volume (SA: V) ratio of the plants, i.e. species with high SA: V ratio were more sensitive to flow. In contrast, net photosynthesis of plants firmly attached to a supporting frame was not significantly affected by increasing flow velocity. This result indicates that the physical stress imposed on the plants by agitation or stretching in the flowing water is a key factor for the observed response. 相似文献
12.
THOMAS A. DAVIDSON CARL D. SAYER HELEN BENNION CAROL DAVID NEIL ROSE MAX P. WADE 《Freshwater Biology》2005,50(10):1671-1686
1. Sedimentary remains of aquatic plants, both vegetative (turions, leaves, spines) and reproductive (fruits, seeds, pollen), may provide a record of temporal changes in the submerged vegetation of lakes. An independent assessment of the degree to which these remains reflect past floristic change is, however, rarely possible. 2. By exploiting an extensive series of historical plant records for a small shallow lake we compare plant macrofossil (three cores) and pollen (one core) profiles with the documented sequence of submerged vegetation change since c. 1750 AD. The data set is based on 146 site visits with 658 observations including 42 taxa classified as aquatic, spanning 250 years. 3. Approximately 40% of the historically recorded aquatic taxa were represented by macro‐remains. In general macrofossils underestimated past species diversity, with pondweeds (three of eight historically recorded Potamogeton species were found) particularly poorly represented. Nonetheless, several taxa not reported from historical surveys (e.g. Myriophyllum alterniflorum and Characeae) were present in the sediment record. 4. The pollen record revealed taxa which left no macro‐remains (e.g. Littorella uniflora), and the macrofossil record provided improved taxonomic resolution for some taxa (e.g. Potamogeton) and a more reliable record of persistence, appearance and loss of others (e.g. Myriophyllum spp. and Nymphaeaceae). 5. Detrended correspondence analysis indicated that changes in the community composition evidenced by the palaeolimnological and historical records were synchronous and of a similar magnitude. Both records pointed to a major change at around 1800, with the historical record suggesting a more abrupt change than the sedimentary data. There was good agreement on a subsequent change c. 1930. 6. The palaeolimnological data did not provide a complete inventory of historically recorded species. Nevertheless, these results suggest that combined macrofossil and pollen records provide a reliable indication of temporal change in the dominant components of the submerged and floating‐leaved aquatic vegetation of shallow lakes. As such palaeolimnology may provide a useful tool for establishing community dynamics and successions of plants over decadal to centennial timescales. 相似文献
13.
The aquatic macrophytes Ranunculus aquatilis and Rorippa nasturtium-aquaticum were transplanted into substrate trays and placed in a stream alongside unvegetated substrate. Macrophytes were observed to have significant effects on 1) invertebrate community structure, 2) guild structure, and 3) microdistribution. 1) Significantly higher taxa richness and community abundances were associated with macrophytes. 2) Significantly higher abundances of shredder, scraper, and predator guilds were associated with macrophytes in fall, and all guilds had higher abundances in macrophytes in spring. However, guild frequency distributions did not differ among habitats except in spring. 3) Enallagma, Gammarus, Gyraulus, Physa, and Pisidium exhibited a strong association with macrophytes, while Hydropsyche, Simulium, Baetis tricaudatus, Glossosoma velona, and Helicopsyche borealis appeared to avoid them. A strong correlation appeared to exist between current velocity preferences of these taxa and their selection or avoidance of vegetated habitat. Thus, the effect of macrophytes in reducing current velocities appeared to be the most important influence on invertebrate microdistribution. However, macrophytes also increase physical heterogeneity and their large surface areas benefit invertebrate community abundances by creating additional living spaces in the water column where none exist above unvegetated substrate. 相似文献
14.
An increasing number of rivers have been restored over the past decades and several studies investigated the effect on biota. The published monitoring results have already been summarized in narrative reviews but there are few quantitative reviews and a comprehensive meta-analysis on different organism groups and factors influencing restoration effect is missing. We compiled monitoring results and information on catchment, river and project characteristics from peer-reviewed literature and unpublished databases to (i) quantify the effect of restoration measures on fish, macroinvertebrates and macrophytes, and (ii) identify predictors which influence restoration effect. Results indicated significant effects of restoration on all three organism groups, especially of widening projects on macrophyte richness/diversity, instream measures on fish and macroinvertebrates, and higher effects on abundance/biomass compared to richness/diversity. Restoration effect was most strongly affected by agricultural land use, river width and project age. Effects were smaller but restoration generally still increased richness/diversity and abundance/biomass in agricultural catchments. Since land use is a proxy for different pressures, the underlying causal relationships have to be investigated in more detail. Project age was the most important factor but had non-linear and even negative effects on restoration outcome, indicating that restoration effects may vanish over time. The meta-analysis indicated that river managers in general can expect an increase of richness/diversity and abundance/biomass of all three organism groups investigated, especially of macrophytes in widening projects and of fish and macroinvertebrates if instream measures are applied. However, variability was high, stressing the need for adaptive management approaches. Furthermore, the large but non-linear and different (even negative) effects of project age stressed the need for long-time monitoring to better understand the trajectories of change caused by restoration measures and to identify sustainable measures. The meta-analysis was restricted to metrics commonly reported in literature and future studies would greatly benefit from authorities and scientists reporting original monitoring data, which would allow to use functional metrics to investigate the effect of restoration measures and to infer causal relationships. 相似文献
15.
Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics 总被引:3,自引:3,他引:0
The results of four macrophyte assessment methods (French Indice Biologique Macrophytique en Rivière, German Reference Index,
British Mean Trophic Rank and Dutch Macrophyte Score) were compared, based on plant survey data of medium-sized lowland streams
in Central Europe. To intercalibrate the good quality class boundaries two alternative methods were applied: direct comparison
and the use of “common metrics”. While the French and British methods were highly related (R2>0.75), the German RI showed less (0.20<R2<0.55) and the Dutch DMS least correlation (R2<0.10) with other methods. Of 70 macrophyte metrics tested only Ellenberg_N was considerably related to three of the national
assessment methods, thus representing a potential common metric for intercalibration. Comparison of quality class boundaries
via regression analysis using both intercalibration approaches revealed major differences between classifications of the French,
German and British methods, which are, in addition, related in a nonlinear way. 相似文献
16.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems. 相似文献
17.
Effects of mine effluent on uptake of Co,Ni, Cu,As, Zn,Cd, Cr and Pb by aquatic macrophytes 总被引:2,自引:1,他引:1
Concentrations of Ni, Co, Cu, Pb, Zn, Cd, Cr and As were determined in aquatic sediments, water and macrophytes collected from a fluvial system, contaminated by mine effluents. Myriophyllum verticillatum collected in May below the trace element point source accumulated 169 µg/g of Ni, 860 µg/g of Co, 37 µg/g of Cu, 31 µg/g of Pb, 92 µg/g of Zn, 6.9 µg/g of Cr and 1,200 µg/g of As (concentrations in dry weight). The aquatic macrophytes Nymphaea odoratae and Pontederia cordata accumulated the investigated trace elements to a much lesser extent. The concentrations of trace elements in Myriophyllum verticillatum decreased from May to August. Correlations were found between the concentrations of total Ni, Co and Cu in the bottom sediment and in the submerged macrophytes. However, there was no correlation between the amounts of these trace elements extractable by 0.5 N HCl from the sediments and the concentrations in the macrophytes. 相似文献
18.
Jacqueline Baar Istvan ParadiEsther C.H.E.T. Lucassen Karen A. Hudson-EdwardsDirk Redecker Jan G.M. Roelofs Alfons J.P. Smolders 《Aquatic Botany》2011,94(2):53-61
This study aimed to assess AMF diversity in various plant species in lakes with low and relatively high P concentrations to elucidate possible correlations with environmental factors in order for better understanding the functioning of mycorrhizal fungi in submerged plants. A considerable diversity of AMF communities was observed in the lakes with low dissolved P concentrations, especially in the roots of Littorella uniflora. Glomus group A, Archaeospora and Acaulospora were the most frequent and diverse AMF lineages with eight, seven and four phylotypes at Littorella uniflora in at least six lakes with low dissolved P concentrations. In theses lakes, AMF were for the first time observed in the roots of J. bulbosus, a member of a family previously thought to be non-mycorrhizal. In the lakes with relatively high dissolved P concentrations, the frequency decreased from Acaulospora, found at three locations, to Archaeospora at two locations and Glomus group A and Paraglomus at one location.All chemical parameters of the surface water layer, except pH, revealed significant (p ≤ 0.01) differences between the lakes with low and relatively high dissolved P concentrations. Mean Mg2+, Ca2+, K+, NH4+, CO2, o-PO43− and HCO3− were 3, 13.5, 15.7, 19.5, 31 and 42.6 times higher, respectively, in the lakes with relatively high dissolved P concentrations compared to the lakes with low dissolved P concentrations. AMF occurred more abundantly with low phosphate and high redox values in the lakes than with high phosphate and low redox values. The pH-value, the total-calcium and total-phosphorus concentrations were strongly correlated with the occurrence of Glomus phylotypes 4 and Archaeospora phylotypes 5 and 8, and a bit less with Acaulospora phylotype 4 and Archaeospora phylotype 3. In such lakes the presence of a diverse AMF community still enables the uptake of sufficient P for isoetid plant species despite the prevailing ‘ultra-oligotrophic’ conditions. As a consequence, macrophyte plant communities in lakes with relatively high dissolved P concentrations are less dependent on AMF colonization for their development. 相似文献
19.
1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3? stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long‐lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii) increasing alkalinity (from 0.17 to 3.20 meq. L?1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia (4.3 cm) and Littorella (3.0 cm) than for Potamogeton species (1.6–2.2 cm). Sediment oxygen penetration depth fell rapidly to 0.4–1.0 cm for all four species at even modest organic enrichment and oxygen consumption in the sediments. Roots became shorter and isoetid roots became thicker to better supply oxygen to apical meristems. 3. Growth of elodeids was strongly inhibited across all levels of organic enrichment of sediments being eight‐fold lower at the highest enrichment compared to the unenriched control. Leaf biomass of isoetids increased three‐fold by moderate organic enrichment presumably because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10‐fold, root length declined from 7 to <2 cm and mortality rose (up to 50%) signalling high plant stress. 4. Lobelia was not affected by HCO3? addition in accordance with its use of sediment CO2. Biomass of elodeids increased severalfold by rising alkalinity from 0.17 to 3.20 meq. L?1 in accordance with their use of HCO3? for photosynthesis, while the negative impact of organically enriched sediments remained. 5. Overall, root development of all four species was so strongly restricted in sediments enriched with labile organic matter that plants if growing in situ may lose root anchorage. Other experiments demonstrate that this risk is enhanced by greater water content and reduced consolidation in organically rich sediments. Therefore, formation of more muddy and oxygen‐demanding sediments during eutrophication will impede plant recovery in restored lakes while high local alkalinity will help elodeid recovery. 相似文献
20.
大水面放养水葫芦对富营养化湖泊水体可培养细菌群落结构的影响 总被引:2,自引:0,他引:2
【目的】了解大水面放养水葫芦对富营养化湖泊水体可培养细菌群落结构和多样性的影响。【方法】采用稀释平板法,分别对云南滇池紫根水葫芦放养区(ZW)、野生型普通水葫芦放养区(PW)、未放养水葫芦对照区(CK)水体中细菌进行分离,并对其16S r RNA序列进行分析。【结果】分别从ZW、PW、CK 3种水体分离得到54、49、40株菌落形态差异的细菌,Shannon-Wiener多样性指数分别为3.17、3.07、2.73,细菌数量分别为1.35×107、8.35×106、2.70×106 CFU/L。16S r RNA序列分析表明,ZW、PW、CK 3种水体可培养细菌主要包括变形菌门α亚群(Alphaproteobacteria,35.1%、32.4%和40%)、放线菌门(Actinobacteria,18.9%、32.4%和20%)、变形菌门β亚群(Betaproteobacteria,13.5%、5.9%和16.0%)、变形菌门γ亚群(Gammaproteobacteria,13.5%、14.6%和12.0%)、拟杆菌门(Bacteroidetes,13.5%、8.8%和8.0%)和厚壁菌门(Firmicutes,2.7%、5.9%和4.0%)。在属的水平上,3种水体仅有鞘氨醇盒菌属(Sphingopyxis)、红细菌属(Rhodobacter)、黄色杆菌属(Xanthobacter)、新鞘脂菌属(Novosphingobium)、鞘氨醇单胞菌属(Sphingomonas)、假单胞菌属(Pseudomonas)、微杆菌属(Microbacterium)、链霉菌属(Steptomyces)、黄杆菌属(Flavobacterium)、芽孢杆菌属(Bacillus)等10个属的细菌为共有菌属。【结论】大水面放养水葫芦提高了富营养化湖泊水体中可培养细菌的多样性,改变了细菌的群落结构。 相似文献