首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fine epitope specificity of ten monoclonal antibodies (MA) agglutinating red blood cells B was studied. Three methods were used: 1) inhibition of MA binding to natural antigen by synthetic oligosaccharides (OS) and their polyacrylamide conjugates, 2) direct MA binding to a series of synthetic OS-polyacrylamide conjugates differing in carbohydrate epitope density, 3) direct MA binding to the affinity sorbents. It is shown that all antibodies studied prefer trisaccharide B determinant Gal alpha 1-3(Fuc alpha 1-2) Gal independently of their ability to discriminate serological subgroups of B erythrocytes (B, Bweak, B3). The correlation of the MAs epitope specificity with their ability to agglutinate red blood cells B subgroups is discussed. Of an interest is that MAs which are able to agglutinate any B subgroups also bing the synthetic tetrasaccharide Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-3GalNAc, a B type 3 determinant.  相似文献   

2.
3.
Epitope specificity of the anti-(B cell lymphoma) monoclonal antibody,LL2   总被引:3,自引:0,他引:3  
LL2 is a murine monoclonal antibody IgG2a reactive with B cells and non-Hodgkin's B-cell lymphoma, which, in a radioiodinated form, induces responses in lymphoma patients [Goldenberg et al. (1991) J Clin Oncol 9:548–564]. In this report we identify LL2 as a member of the CD22 cluster. The molecular size of the antigen, its expression profile, and competitive blocking studies were used to establish this identification. By Western blot analysis and immunoprecipitation studies using the Raji Burkitt's lymphoma cell line metabolically labelled with [3H]leucine, the LL2 antigen was determined to correspond to a molecular mass of 140 kDa. The molecular mass of the LL2 antigen, and the B-cell-restricted reactivity of the LL2 antibody, were consistent with both the CD21 and CD22 clusters. To assess additional similarities and differences between LL2 and anti-CD22 and anti-CD21, the binding of these mAb to cultured cell lines. Nalm-6 and Molt-4, was compared by flow cytometry. The binding profile of LL2 on these cell lines was consistent with anti-CD22, but not anti-CD21. Sequential immunoprecipitation and cross-blocking studies with anti-CD22 monoclonal antibodies recognizing established CD22 epitopes were performed to confirm that LL2 reacts with CD22 and to determine which epitope LL2 recognizes. Binding of131I-LL2 to Raji cells is inhibited over 90% by prior incubation of the target cells with unlabelled RFB4, indicating that LL2 belongs to the same epitope group as RFB4, i.e., epitope B.This work was supported in part by USPHS grant CA39841 from the NIH  相似文献   

4.
Spleen cells from hamsters immunized with recombinant mouse interferon-gamma (IFN-gamma) were fused with mouse myeloma cells, resulting in the production of four anti-IFN-gamma monoclonal antibodies. Binding of 125I-IFN-gamma by these protein A-bound antibodies was specifically blocked by cold IFN-gamma. Binding by three of these antibodies was also blocked by a synthetic peptide corresponding to the N-terminal 1-39 amino acids of IFN-gamma, whereas a corresponding C-terminal (95-133) peptide had no effect on binding. The N-terminal specificity of these three antibodies was confirmed by their specific binding of 125I-N-terminal (1-39) peptide. One of the N-terminal specific monoclonal antibodies inhibited both antiviral and macrophage priming (for tumor cell killing) activities of IFN-gamma, whereas the other two had no effect on either biologic function. The selectivity of the inhibition of IFN-gamma function was not due to a differential ability of the N-terminal specific antibodies to bind IFN-gamma. Blocking experiments with cold IFN-gamma and N-terminal peptide suggest that the epitope specificities of the monoclonal antibodies could be determined by the conformational or topographic structure of IFN-gamma. An exact determination of the epitope specificity of the monoclonal antibody that inhibited IFN-gamma function could provide insight into the structural basis for the role of the N-terminal domain in the biologic function of IFN-gamma. Polyclonal antibodies to either the N-terminal or the C-terminal peptides also inhibited both the antiviral and the macrophage-priming activities of IFN-gamma. All of the antibodies that inhibited IFN-gamma function also blocked binding of IFN-gamma to membrane receptor on cells, whereas antibodies that did not block function also did not inhibit binding. The data suggest that both the N-terminal and the C-terminal domains of IFN-gamma play an important role in its antiviral and macrophage-priming functions, possibly in a cooperative manner.  相似文献   

5.
Monoclonal antibodies (mAbs) against morphine are important in the development of immunotherapeutic and diagnostic methods for the treatment and prevention of drug addiction. By the surface plasmon resonance (SPR) and enzyme immunoassay techniques, we characterized two previously obtained mAbs 3K11 and 6G1 and showed their ability to recognize free morphine and morphine‐containing antigens in different ways because of the epitope specificity thereof. Using the defined amino acid sequences, we obtained three‐dimensional models of the variable regions of Fab fragments of these antibodies and compared them with the known sequence and spatial structure of the anti‐morphine antibody 9B1. Docking simulations are performed to obtain models of the antibodies complexes with morphine. Differences in the models of 3K11 and 6G1 complexes with morphine correlate with their experimentally detected epitope specificity. The results, in particular, can be used for the structure‐based design of the corresponding humanized antibodies. According to our modeling and docking results, the very different modes of morphine binding to mAbs 3K11 and 6G1 are qualitatively similar to those previously reported for cocaine and two anti‐cocaine antibodies. Thus, the obtained structural information brings more insight into the hapten recognition diversity.  相似文献   

6.
目的通过ELISA相加试验和狂犬病毒(Rabies virus,RV)逃逸突变试验对一株人源抗狂犬病病毒单克隆抗体(human anti-rabies virus monoclonal antibody,Ab1)进行抗原表位分析。方法将已知表位的对照抗体(CR57和CR4098)和Ab1进行ELISA相加试验;以及对RV逃逸株氨基酸突变位点分析进一步验证Ab1针对的抗原表位,用小鼠中和试验(mouse neutralization test,MNT)分析Ab1的体内抗狂犬病病毒中和活性。结果 Ab1和CR57可同时与RV结合;与CR4098存在竞争,Ab1的逃逸株在氨基酸位点333、336发生突变,MNT检测体内中和活性为550.32 IU/mg,MNT和快速荧光灶抑制试验(rapid fluorescent focus inhibition test,RFFIT)结果基本一致。结论该抗体针对III号抗原表位且具有较高的抗狂犬病病毒中和活性。  相似文献   

7.
Mouse podoplanin (mPDPN) is a type I transmembrane sialoglycoprotein, which is expressed on lymphatic endothelial cells, podocytes of the kidney, and type I alveolar cells of the lung. mPDPN is known as a platelet aggregation-inducing factor and possesses four platelet aggregation-stimulating (PLAG) domains: PLAG1, PLAG2, and PLAG3 in the N-terminus and PLAG4 in the middle of the mPDPN protein. mPDPN overexpression in cancers has been reportedly associated with hematogenous metastasis through interaction with the C-type lectin-like receptor 2 of platelets. We previously reported a rat anti-mPDPN monoclonal antibody clone PMab-1, which was developed by immunizing the PLAG2 and PLAG3 domains of mPDPN. PMab-1 is very useful in flow cytometry, western blot, and immunohistochemical analyses to detect both normal cells and cancers. However, the binding epitope of PMab-1 remains to be clarified. In the present study, flow cytometry, enzyme-linked immunosorbent assay, and immunohistochemical analyses were utilized to investigate the epitope of PMab-1. The results revealed that the critical epitope of PMab-1 is Asp39 and Met41 of mPDPN. These findings can be applied to the production of more functional anti-mPDPN monoclonal antibodies.  相似文献   

8.
9.
10.
11.
Bacteriophytochromes (BphP) are phytochrome‐like light sensing proteins in bacteria, which use biliverdin as a chromophore. In order to study the biochemical properties of the DrBphP protein, five (2B8, 2C11, 3B2, 3D2, and 3H7) anti‐DrBphP monoclonal antibodies were produced through the immunization of mice with purified full‐length DrBphP and DrBphN (1–321 amino acid) proteins, and epitope mapping was then carried out. Among the five antibodies, 2B8 and 2C11 preferentially recognized the N‐terminal region of BphP whereas 3B2, 3D2, and 3H7 showed preference for the C‐terminal region. We performed further epitope mapping using recombinant truncated BphP proteins to narrow down their target sequences. The results demonstrated that each of the five monoclonal antibodies recognized different regions on the DrBphP protein. Additionally, epitopes of 2B8 and 3H7 antibodies were discovered to be shorter than 10 amino acids (2B8: RDPLPFFPP, 3H7: PGEIEEA). These two antibodies with such specific recognition epitopes could be especially valuable for developing new peptide tags for protein detection and purification.  相似文献   

12.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

13.
Diacylglycerol kinase δ (DGKδ) is a type II DGK, which catalyzes diacylglycerol phosphorylation to produce phosphatidic acid. DGKδ is expressed in several types of tissues and organs including the stomach, testis, bone marrow, and lymph node. Here, we established an anti-human DGKδ (hDGKδ) mAb, DdMab-1 (mouse IgG2a, kappa), which is useful for Western blot analysis. We also introduced deletion or point mutations to hDGKδ, and performed western blotting to determine the binding epitope of DdMab-1. DdMab-1 reacted with the dN670 mutant, but not with the dN680 mutant, indicating that the N-terminus of the DdMab-1 epitope is mainly located between amino acids 670 and 680 of the protein. Further analysis using point mutants demonstrated that R675A, R678A, K679A, and K682A mutants were not detected, and V680A was only weakly detected by DdMab-1, indicating that Arg675, Arg678, Lys679, Val680 and Lys682 are important for binding of DdMab-1 to hDGKδ.  相似文献   

14.
Six monoclonal antibodies specific to human protein C were characterized. Epitopes of these antibodies were determined on isolated proteolytic peptides of protein C by immunological methods. Three antibodies bound light chain of protein C: PC01 bound the γ-carboxyglutamic acid domain calcium-dependently, while PC02 and PC08 bound the first epidermal growth factor-like domain in calcium-dependent and independent manners, respectively. The other three antibodies bound the heavy chain of protein C: PC13 bound activation peptide, PC04 recognized the activation site and PC09 bound the region close to a disulfide bond connecting light and heavy chains. Activation of protein C with thrombin-thrombomodulin complex was inhibited strongly by PC04 and moderately by PC08, PC09 and PC13. PC04 and PC13 may directly block the activation site. On the other hand, epitopes of PC08 and PC09 may be involved in interaction between protein C and thrombin-thrombomodulin complex, or locate close to activation site on the tertiary structure of protein C. Anticlotting activity of protein C was inhibited strongly by PC01 and moderately by PC02, PC08 and PC09, while amidolytic activity was inhibited only by PC09. The epitopes described here may constitute part of protein-C-specific sites, which are important for the function of protein C.  相似文献   

15.
The epitope specificity of the protective immune response against swine transmissible gastroenteritis (TGE) has been investigated by using circulating and secretory antibodies. This study was carried out with sows vaccinated with TGEV or the antigenically related porcine respiratory coronavirus (PRCV). TGEV vaccination of sows resulted in greater lactogenic protection of suckling piglets against TGEV challenge and a higher secretory immune response than PRCV vaccination did. These differences in the immune response were conditioned by the route of antigen presentation as a result of the different tropism of each virus. Epitopes on S protein, and in particular those contained in its antigenic site. A, were more immunogenic than epitopes on N and M proteins in both groups of vaccinated sows, as determined by a competitive radioimmunoassay. Minor differences in antibody response against the previously defined antigenic subsites Aa, Ab, and Ac were also detected, with subsite Ab being the most antigenic in both TGEV- and PRCV-immune sows. These findings suggest that antigenic site A on S protein, involved in virus neutralization, is the immunodominant site in pregnant sows that confer lactogenic protection. They also validate, in experiments with secretory antibodies, the antigenic maps made with murine monoclonal antibodies. Therefore, this antigenic site should be considered for vaccine or diagnostic development.  相似文献   

16.
Fifteen different monoclonal antibodies, developed against a pseudexin A, B, and C mixture, were screened for linear epitope recognition. Peptides (9-mers) spanning pseudexin B were synthesized on alanine-derivatized polyethylene pins and subsequently probed with antibody. Four antibodies recognized linear epitopes of pseudexin A, pseudexin B, and also nonidentical sequences found in other phospholipases A2 (PLA2s) as determined by enzyme-linked immunosorbent assays. Three antibodies recognized a highly conserved site important in calcium binding and the interlocking of dimeric forms of PLA2. Antibodies neutralizing lethal or enzymatic effects of PLA2 did not recognize linear epitopes.  相似文献   

17.
Overlapping fragments of the fourth isoform of human plasma membrane Ca(2+)-ATPase (hPMCA4) and several fragments of hPMCA1 were expressed in bacterial cells and purified by metal affinity chromatography. Enzyme immunoassays of the fragments helped map epitopes for 4 monoclonal antibodies (2D8, 8B8, 7C8 and 5E6). The epitope for 2D8 was localized within the 222-249 site (i.e., in the putative transduction domain), the epitopes for 8B8 and 7C8 were localized within the 330-353 site, in which phospholipids are presumably bound, and the 5E6 epitope was found within the 791-843 site, where the putative hinge region is situated. 2D8 recognizes hPMCA1 and hPMCA4 isoforms, while 8B8 and 7C8 are specific for hPMCA4. The amino acid sequences of these epitopes and phage-displayed mimotopes were compared.  相似文献   

18.
In this article we report the first topological mapping of neutralizing epitopes of a hepadnavirus. Duck hepatitis B virus is the only hepadnavirus that can replicate and spread from cell to cell in tissue culture. As a result, it is possible to study hepadnaviral neutralization in vitro with this system. To accomplish this goal, we produced a library of monoclonal antibodies against duck hepatitis B virus and identified 12 neutralizing monoclonal antibodies by using an in vitro neutralization assay. The characteristics of six of the neutralizing monoclonal antibodies were further studied by epitope mapping. From the results of competitive binding studies, three distinct neutralizing epitopes were identified on the pre-S polypeptides and one was identified on the S polypeptide. Our findings suggest that antibodies to both the pre-S and S gene products of duck hepatitis B virus can neutralize viral infection in vitro. The pre-S gene product is at least as important as the S gene product in eliciting neutralizing antibodies.  相似文献   

19.
Antigenic specificity of monoclonal antibodies to human myoglobin   总被引:7,自引:0,他引:7  
Two monoclonal antibodies directed against different sites of the human myoglobin molecule have been tested for their cross-reactivities against several myoglobins including seven from mammalian species. The relation between their cross-reactivities and their amino acid sequences had led to a possible localization of two antigenic domains in human myoglobin. Each domain includes residues previously considered not to be directly involved in the antigenic structure of myoglobin. Unlike polyclonal serum antibodies, monoclonal hybridoma antibodies directed to a native protein often fail to bind to supposedly antigenic protein fragments. This is explicable in terms of the concept of antigenic domains. Such domains are numerous and overlapping, each comprising a number of contributory amino acid side chains which need not necessarily include continuous sequences of amino acids and which need not exhibit measurable antigenicity in isolation from the rest of the domain.  相似文献   

20.
A hemagglutinating monoclonal IgM antibody (MoAb145) was produced against a high incidence red blood cell membrane antigen. By the specific red cell adherence test, the antibody also reacted with human bladder epithelium; in addition, expression of the MoAb145 antigen was lost in some cases of transitional cell carcinoma of the bladder, in a manner similar to the ABH blood group. Hemagglutination studies with a panel of erythrocytes lacking specific high incidence red blood cell membrane antigens indicated that MoAb145 did not recognize ABH specificity but rather a determinant absent from rare MN variant erythrocytes, including En(a-) erythrocytes, which lack glycophorin-alpha. Failure of MoAb145 to stain, by indirect immunofluorescence, the erythroleukemia cell line K562, which expresses glycophorin-alpha and the MN blood group, and failure to inhibit MoAb145 hemagglutination with an erythrocyte sialoglycoprotein fraction that contained MN blood group activity suggests that MoAb145 does not recognize either glycophorin-alpha or the MN blood group, but rather another membrane determinant, which is altered in En(a-) erythrocytes. This study demonstrates a new epitope detected by MoAb145 that is shared between human erythrocyte membranes and bladder epithelia, and is affected by neoplastic transformation in transitional cell carcinoma of the bladder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号