首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiphophorus fishes are well-established models for biomedical research of spontaneous or induced tumors, and their use in research dates back to the 1930s. Currently, 58 well-pedigreed lines exist among 24 Xiphophorus species housed as live animals at the Xiphophorus Genetic Stock Center. The technique of sperm cryopreservation has been applied to preserve these valuable genetic resources, and production of offspring has been reported with cryopreserved sperm in two species (X. helleri and X. couchianus). The goal of this research was to establish protocols for sperm cryopreservation and artificial insemination that yield live young in X. maculatus, a widely used research species. The objectives were to: 1) collect basic biological characteristics of males, and quantify the sperm production yield after crushing of dissected testis; 2) cryopreserve sperm from X. maculatus by adapting as necessary the protocols for sperm cryopreservation of X. helleri and X. couchianus; 3) use cryopreserved sperm to inseminate virgin females of X maculatus and other species (X. helleri and X. couchianus), and 4) compare experimental trials over a 3-year period to identify opportunities for improving female fecundity. In total, 117 males were used in this study with a standard length of 2.5 ± 0.3 cm (mean ± SD), body weight of 0.474 ± 0.149 g, and dissected testis weight of 7.1 ± 3.7 mg. Calculation of sperm availability showed 5.9 ± 2.8 × 10(6) sperm cells per mg of testis weight. Offspring were produced from cryopreserved sperm. Male-to-male variation (1-70%) was observed in post-thaw motility despite little variation in motility before freezing (60-90%) or genetic variation (~100 generations of sib-mating). Comparisons of biological factors of males did not have significant correlations with the production of live young, and the influence of females on production of young was identified from the comparison of artificial insemination over 3 years. Overall, this study describes offspring production from cryopreserved sperm in a third species of Xiphophorus fishes, and identifies the opportunities for improving female fecundity which is essential for establishment of germplasm repositories for Xiphophorus fishes.  相似文献   

2.
Huang C  Dong Q  Walter RB  Tiersch TR 《Theriogenology》2004,62(1-2):179-194
Swordtails and platyfish of the genus Xiphophorus are valuable models for biomedical research and are also commercially raised as ornamental fish valued by aquarists. While research use and commercial interest increases yearly in these fish, cryopreservation of sperm is unexplored in this genus. Xiphophorus are live-bearing fishes characterized by small body sizes, limited sperm volumes, and internal fertilization, an atypical reproductive mode for fish. These attributes make research involving cryopreservation of Xiphophorus germplasm challenging. To explore methods for sperm cryopreservation, this study evaluated the effect of different loading volumes of sperm suspension in 0.25-ml French straws, different dilution ratios of sperm to extender, an osmolality range of extender without cryoprotectant and with dimethyl sulfoxide (DMSO) as cryoprotectant, and short-term storage at room temperature and 4 degrees C after thawing. No significant difference in sperm motility due to straw loading volume was observed after thawing. Sperm motility was observed to decrease with increasing dilution. The osmolality of Hanks' balanced salt solution (HBSS) without cryoprotectant in which the highest sperm motility (67%) was observed was 320 +/- 3 mOsm/kg, which was also the osmolality of X. helleri blood plasma. When cryopreserved with 10% DMSO, however, the highest motilities within 10 min after thawing were observed with HBSS in the range of 240-300 mOsm/kg. Sperm suspended in HBSS at 320 mOsm/kg with a dilution factor of 100 maintained motility for 24h at room temperature, but persisted for 10 days when stored at 4 degrees C. These results provided the first evidence that cryopreservation may be applied to conservation of genetic resources in live-bearing fishes.  相似文献   

3.
Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species.  相似文献   

4.
In this study, we evaluated various parameters of sperm cryopreservation in two livebearers, guppies (Poecilia reticulata) and black mollies (P. latipinna). Our results suggested a common freezing protocol for the guppies and mollies: suspend sperm in Hanks’ balanced salt solution (HBSS) at 300 mOsm/kg, use 14% glycerol as cryoprotectant, cool at 25 °C/min, and thaw at 40 °C in a water bath for 7 s. Live young were produced from females inseminated with frozen-thawed sperm in both species. In guppies, percent fertilization (F) and the number of embryos (N) produced with cryopreserved sperm (F = 50%, N = 74, from 26 females) were similar to those of fresh controls (F = 54%, N = 61, from 22 females). Interestingly, this same freezing protocol has been used successfully for sperm cryopreservation in green swordtails Xiphophorus helleri, and platyfish of X. couchianus with post-thaw motility as high as 80%. All these species belong to the family of Poeciliidae, and their sperm are similar in morphology exhibiting the absence of acrosome, elongate sperm head, and the long mitochondrial sheaths. Besides their internal fertilization reproduction mode, these fish are also small in size (2–4 cm) and live in a freshwater environment. Sperm cryopreservation in fish has been generally recognized as species specific, and new protocols are required for new species. However, results presented in this study suggested otherwise. Thus, sperm cryopreservation methods optimized for one species may be applicable to others if they are taxonomical closely related species with similar sperm morphology and reproduction mode. Considering the enormous number of fish species on the planet, development of generalized sperm freezing protocols for species in groups could have additional advantages for genetic conservation.  相似文献   

5.
Artificial insemination (AI) and the cryopreservation of sperm with full reproductive capabilities are vital in the armamentarium of infertility clinics and reproductive laboratories. Notwithstanding the fantastic successes with AI and sperm cryopreservation in numerous species, including humans and cattle, these assisted reproductive technologies are less well developed in other species of importance for biomedical research, such as genetically modified mice and nonhuman primates. To that end, AI at high efficiency in the rhesus macaque (Macaca mullata) and the successful cryopreservation of rhesus sperm is presented here, as are the complexities of this primate model due to differences in reproductive tract anatomy and gamete physiology. Cryopreservation had no effect on the ability of sperm to fertilize oocytes in vitro or in vivo. Post-thaw progressive motility was not affected by cryopreservation; however, acrosome integrity was lower for cryopreserved (74.1%) than for fresh sperm (92.7%). Fertilization rates did not differ when fresh (58.1%; n = 32/55) or cryopreserved sperm (63.8%; n = 23/36) were used for in vitro fertilization. Similarly, pregnancy rates did not differ significantly after AI with fresh (57.1%; n = 8/14) or cryopreserved sperm (62.5%; n = 5/8). Seven live rhesus macaques were born following AI with fresh sperm, and three live offspring and two ongoing pregnancies were obtained when cryopreserved sperm were used. Cryopreservation of rhesus sperm as presented here would allow for the cost-effective storage of lineages of nonhuman primates with known genotypes. These results suggest that either national or international centers could be established as repositories to fill the global needs of sperm for nonhuman primate research and to provide the experimental foundation on which to explore and perfect the preservation of sperm from endangered nonhuman primates.  相似文献   

6.
In this study, refrigerated storage and cryopreservation of sperm from the green swordtail Xiphophorus helleri were investigated. Previous cryopreservation research in this species utilized motile sperm because unlike in most fish species, Xiphophorus sperm can remain continuously motile after collection for a week with refrigerated storage. However, this species reproduces by internal fertilization, and given the significant requirements for motility within the female reproductive tract and potential limitations on sperm energetic capacities, immobilization of sperm prior to insemination could be used to improve fertilization success. Thus, the goal in this study was to use osmotic pressure to inhibit the motility of sperm after collection from X. helleri, and to test the effect of immobilization on refrigerated storage and cryopreservation. The objectives were to: (1) estimate the motility of sperm at different osmotic pressures, and determine an osmotic pressure suitable for immobilization; (2) cryopreserve the immobilized sperm, and estimate the motility after thawing with or without dilution, and (3) compare motility of non-immobilized and immobilized sperm after thawing, centrifugation, and washing to remove cryoprotectant. Motility was determined when sperm were suspended in 11 different osmotic pressures (24-500 mOsmol/kg) of Hanks' balanced salt solution (HBSS). Motility was observed between 116 and 425 mOsmol/kg. Sperm were not motile when the osmolality was lower than 116 or higher than 425 mOsmol/kg. Motility of the immobilized (non-motile) sperm could be activated by changing the osmotic pressure to 291-316 mOsmol/kg, and motility of immobilized sperm from hypertonic HBSS (425 mOsmol/kg) was significantly higher than that from hypotonic HBSS (145 mOsmol/kg) after 48 h of storage. At an osmolality of 500 mOsmol/kg, HBSS was used as extender to maintain immobilized sperm during cryopreservation with glycerol as the cryoprotectant. High motility (approximately 55%) was obtained in sperm after thawing when cryopreserved with 10-15% glycerol, and dilution of thawed sperm in fresh HBSS (1:4; V:V) was found to decrease the motility significantly. No difference was found in the motility of thawed sperm cryopreserved with 14% glycerol and extended in 310 and 500 mOsmol/kg HBSS. Washing by centrifugation prolonged the motility of thawed sperm from 24 to 72 h in HBSS at 310 and 500 mOsmol/kg. This study showed that sperm from X. helleri could be immobilized by use of specific osmotic pressures, and that the immobilization did not affect sperm motility after thawing. The immobilization of sperm by osmotic pressure could minimize reduction of the energetic capacities necessary for insemination, traversal, and residence within the female reproductive tract, and fertilization.  相似文献   

7.
Gamete preservation techniques are essential in animal husbandry as well as in assisted reproduction for humans. In this research we attempted to use 3 different sperm preservation techniques in combination with newly developed techniques for intracytoplasmic sperm injection (ICSI) to fertilize eggs of a teleost fish, the Nile tilapia (Oreochromis niloticus). Of 47 eggs injected with fresh sperm, 11 (23%) were fertilized, 5 developed abnormally, and 4 developed normally and hatched; from these, one grew to adulthood. Nuclear DNA content of 4 of the abnormal embryos indicated that they were diploid. Flow cytometric analysis of a blood sample from the surviving ICSI fish collected 2 months after fertilization indicated that the fish was diploid. Of 45 eggs injected with cryopreserved sperm, 9 (20%) developed to the blastula stage. Of 40 eggs injected with sperm preserved in 70% methanol, none were fertilized. No injections were possible with freeze-dried Nile tilapia sperm owing to technical difficulties during manipulation. Although the findings described here are limited, they provide the first steps toward using sperm preservation methods in addition to cryopreservation for fertilization in fishes.  相似文献   

8.
This study was carried out to test how sperm cryopreservation affected nuclear DNA stability and whether progeny development was modified when eggs were fertilized with cryopreserved spermatozoa. The "comet assay" (alkaline single-cell gel electrophoresis assay) was adapted to trout spermatozoa to estimate DNA stability as measured by alkali-induced DNA strand break formation. Because trout eggs develop in water after fertilization (oviparous species) and that eggshell is easy to clear up after fixative treatment, progeny development was assessed from the blastodisc flattening stage of the embryos to the first feeding stage of the hatched fries by direct observation. All parameters under study were analyzed on each sperm and comparisons between parameters were made using paired data. Freeze-thawing of sperm slightly but significantly increased the percentage of nuclei showing altered DNA after comet assay. This increase was correlated to the decrease in fertilization rates of sperm, but the absolute percentage of altered nuclei was not predictive of the absolute fertilization ability of sperm. Assessment of progeny development showed that survival rate and abnormality rate obtained after fertilization with cryopreserved sperm were not different from those obtained with fresh sperm. It is concluded that trout sperm cryopreservation only slightly affected sperm DNA stability and that the use of cryopreserved spermatozoa did not impair offspring survival and quality.  相似文献   

9.
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach.  相似文献   

10.
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach.  相似文献   

11.
This report describes the feasibility of using vitrification for fish sperm. Vitrification can be used to preserve samples in the field and offers an alternative to conventional cryopreservation, although it has not been systematically studied for sperm of aquatic species. The overall goal of the project was to develop streamlined protocols that could be integrated into a standardized approach for vitrification of aquatic species germplasm. The objectives of the present study in channel catfish (Ictalurus punctatus) were to: (1) evaluate the acute toxicity of 5%, 10%, 20% and 30% methanol, N,N-dimethyl acetamide, dimethyl sulfoxide, 1,2-propanediol, and methyl glycol; (2) evaluate a range of devices commonly used for cryopreservation and vitrification of mammalian sperm; (3) compare vitrification with and without cryoprotectants; (4) evaluate the post-thaw membrane integrity of sperm vitrified in different cryoprotectant solutions, and (5) evaluate the ability of vitrified sperm to fertilize eggs. Cryoprotectant concentrations of higher than 20% were found to be toxic to sperm. Methanol and methyl glycol were the least toxic at a concentration of 20% with an exposure time of less than 5 min. We evaluated a method reported for human sperm, using small volumes in loops (15 μl) or cut standard straws (20 μl) with and without cryoprotectants plunged into liquid nitrogen. Cryoprotectant-free vitrification using loops did not yield fertilization (assessed by neurulation), and the fertilization rates observed in two trials using the cut standard straws were low (∼2%). In general, fertilization values for vitrification experiments were low and the use of low concentrations of cryoprotectants yielded lower fertilization (<10%) than the use of vitrification solutions containing high cryoprotectant concentrations (as high as 25%). The highest neurulation obtained was from a mixture of three cryoprotectants (20% methanol + 10% methyl glycol + 10% propanediol) with a single-step addition. This was reflected in the flow cytometry data from which the highest membrane integrity using loops was for 20% methanol + 10% methyl glycol + 10% propanediol (∼50%). We report the first successful sperm vitrification in fish and production of offspring from vitrified sperm in channel catfish. Although the fertilization values were low, at present this technique could nevertheless be used to reconstitute lines (especially in small aquarium fishes), but it would require improvement and scaling up before being useful as a production method for large-bodied fishes such as catfish.  相似文献   

12.
Generation of viable fish from cryopreserved primordial germ cells   总被引:3,自引:0,他引:3  
An increasing number of wild fish species are in danger of extinction, often as a result of human activities. The cryopreservation of gametes and embryos has great potential for maintaining and restoring threatened species. The conservation of both paternal and maternal genetic information is essential. However, although this technique has been successfully applied to the spermatozoa of many fish species, reliable methods are lacking for the long-term preservation of fish eggs and embryos. Here, we describe a protocol for use with rainbow trout (Oncorhynchus mykiss) primordial germ cells (PGCs) and document the restoration of live fish from gametes derived from these cryopreserved progenitors. Genital ridges (GRs), which are embryonic tissues containing PGCs, were successfully cryopreserved in a medium containing 1.8 M ethylene glycol (EG). The thawed PGCs that were transplanted into the peritoneal cavities of allogenic trout hatchlings differentiated into mature spermatozoa and eggs in the recipient gonads. Furthermore, the fertilization of eggs derived from cryopreserved PGCs by cryopreserved spermatozoa resulted in the development of fertile F1 fish. This PGC cryopreservation technique represents a promising tool in efforts to save threatened fish species. Moreover, this approach has significant potential for maintaining domesticated fish strains carrying commercially valuable traits for aquaculture purposes.  相似文献   

13.
Cryopreservation of gametes and embryos of non-domestic species.   总被引:1,自引:0,他引:1  
Many species of mammals are threatened or endangered. Methods of assisted reproduction that are being used with increasing frequency to produce offspring of domestic animals and humans are often viewed as offering innovative ways to reproduce non-domestic species as well. Uncounted millions of live young of domestic or laboratory species have been produced from gametes and embryos stored at -70 degrees C or below, sometimes for as long as 25 to 35 yrs. Such methods of cryopreservation are now being applied with increasing frequency and urgency to preserve gametes and embryos of non-domestic and threatened species to establish "genome resource banks" or "frozen zoos." But levels of success to produce live young from such cryopreserved gametes or embryos vary considerably from species to species, as well as from individual to individual. It is sometimes thought that differences among species in fundamental characteristics of their gametes may determine the efficacy of cryopreservation and the production of live young. However, it may not be that ineffective cryopreservation is responsible for low success rates. Rather, the limiting factor may be insufficient information and knowledge of the most basic reproductive biology of such non-domestic species. Even standard methods of cryopreservation may be completely adequate to act as a "temporary" expedient to preserve germplasm of non-domestic species to permit time to acquire a fuller understanding of the biology and behavior of non-domestic species.  相似文献   

14.
The cryopreservation of salmonid sperm is a complex process involving the interplay of many factors. Although cryopreservation protocols can be evaluated through a range of responses at various stages in the process, the number of progeny is the ultimate indicator of success. We compared reproductive success from freezing Atlantic salmon (Salmo salar L.) sperm using the eight combinations of (1) the penetrating cryoprotectants, 10% dimethyl sulfoxide (DMSO) or methanol (MeOH); (2) the nonpenetrating cryoprotectants glucose (0.3 M) or sucrose (0.6 M), and freezing in 0.1 mL pellets or 0.25 mL straws. All cryodiluents were supplemented with 10% (v/v) of hen's egg yolk. Response variables were the percentage and degree of motility of thawed and activated sperm using computer assisted sperm analysis (CASA), and rates of eyed embryos, hatch and egg sac larvae. Growth rates of alevins were assessed to two months post hatch. Atlantic salmon milt cryopreserved in straws had higher spermatozoa motility and fertilization success than milt cryopreserved in pellets (P < 0.05). Type of sugar tested did not significantly affect the response variables. In the MeOH treatment, thawed spermatozoa achieved higher speed and a higher fertilization rate evaluated at the eyed embryo stage than spermatozoa subjected to the DMSO treatment. Higher mortality rate (especially before hatching) of MeOH offspring than DMSO offspring led to equal numbers of progeny for the two treatments from the swimming stage to the end of the study. Moreover, during feeding fish from the MeOH group produced significantly lower weight larvae than the DMSO and control groups. Even so, the weight of the MeOH group was satisfactory. Length and the condition factors did not differ significantly among the larvae groups. Significant positive correlations were found between fertilization success (measured in number of eyed eggs) and both motility (rs = 0.81), and velocity (rs = 0.49). Freezing in straws gave betters results than freezing in pellets for cryopreservation of salmon milt; whereas type of sugar tested (glucose vs sucrose) did not have significant effects. Penetrating cryoprotectants DMSO and MeOH differed in their effect on post-thawed sperm velocity, fertilization rate and mortality rate of progeny, suggesting the need for further research on the influence of these cryoprotectants on frozen sperm and and post-fertilization devopmental processes.  相似文献   

15.
Huang C  Dong Q  Walter RB  Tiersch TR 《Cryobiology》2004,48(3):220-308
Sperm cryopreservation for fishes with internal fertilization is essentially unexplored although many species of these fishes are valuable biomedical research models. To explore methods for sperm cryopreservation within the live-bearing genus Xiphophorus, this study used X. helleri to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio. Sperm motility and survival duration after thawing showed significant differences among different cryoprotectants with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as the cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) at 300 mOsmol/kg. Samples cooled from 5 to -80 degrees C at 20 degrees C/min yielded the highest post-thaw motility although no significant difference was found in the first 4h after thawing for cooling rates across the range of 20-35 degrees C/min. Evaluation of equilibration time revealed no significant difference between 20 min and 2h, but the highest motility at 10 min after thawing was found with a 20-min equilibration. Dilution ratios of sperm-to-extender at 1:20, 1:60, and 1:120 showed no significant differences in motility and survival duration after thawing, but the dilution of sperm solutions with HBSS (320 mOsmol/kg) immediately after thawing reduced the decline of sperm motility, and significantly prolonged the survival duration. Based on these findings, the highest average sperm motility (77%) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsmol/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 20 degrees C/min from 5 to -80 degrees C before being plunged in liquid nitrogen, and thawed in a 40 degrees C water bath for 7s. If diluted immediately after thawing, sperm frozen by the protocol above retained continuous motility after thawing for more than 8 days when stored at 4 degrees C.  相似文献   

16.
Selection for live bearing is thought to occur when the benefits of increasing offspring survival exceed the costs of reduced fecundity, mobility and the increased metabolic demands of carrying offspring throughout development. We present evidence that live bearing has evolved from egg laying 12 times in teleost (bony) fishes, bringing the total number of transitions to 21 to 22 times in all fishes, including elasmobranchs (sharks and rays). Live bearers produce larger offspring than egg layers in all of 13 independent comparisons for which data were available. However, contrary to our expectation there has not been a consistent reduction in fecundity; live bearers have fewer offspring in seven out of the 11 available comparisons. It was predicted that live bearers would have a larger body size, as this facilitates accommodation of developing offspring. This prediction was upheld in 14 out of 20 comparisons. However, this trend was driven by elasmobranchs, with large live bearers in seven out of eight comparisons. Thus, while the evolution of live bearing in elasmobranchs is correlated with predicted increases in offspring size and adult size, teleost live bearers do not have such a consistent suite of life-history correlates. This suggests that constraints or selection pressures on associated life histories may differ in live-bearing elasmobranchs and teleost fishes.  相似文献   

17.
Ding F  Milley JE  Rommens M  Li J  Lei J  Lall SP 《Cryobiology》2012,65(1):51-55
Hormone implantation is widely applied in halibut (Hippoglossus hippoglossus L.) aquaculture to extend the sperm production season of broodstock males. The ability to combine this technique with cryopreservation would increase sperm availability, thereby improving reproduction success and facilitating gene management. In this paper, the cryopreservation ability of sperm from hormone-treated males was examined at three times post-implantation and compared with that of sperm from males that were not hormone-treated. All sperm samples were cryopreserved using the same method. The effectiveness of these techniques was assessed by examining the fertilization rate and motility of thawed sperm. The spermotocrit and concentration of fresh sperm samples were measured to reveal the effect of hormone implantation on sperm characteristics. The reported results indicate that hormone implantation did not affect cryopreservation efficiency. The fertilization rate resulting from thawed sperm of hormone-treated males showed no significant difference from that of untreated males or from fresh sperm. A significant positive relationship was demonstrated between the spermatocrit and concentration of sperm; and a significant decrease of spermatocrit was found in sperm collected from hormone-treated males 14days post-implantation. No significant linear relationship between spermotocrit and fertilization rate of thawed sperm was shown.  相似文献   

18.
Sperm cryopreservation of live-bearing fishes, such as those of the genus Xiphophorus is only beginning to be studied, although these fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. To explore optimization of techniques for sperm cryopreservation of these fishes, this study measured the volumetric shrinkage response during freezing of sperm cells of Xiphophorus helleri by use of a shape-independent differential scanning calorimeter (DSC) technique. Volumetric shrinkage during freezing of X. helleri sperm cell suspensions was obtained in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol; and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder of 33.3 microm in length and 0.59 microm in diameter with an osmotically inactive cell volume (V(b)) of 0.6V(o), where V(o) is the isotonic or initial cell volume. By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best-fit membrane permeability parameters (reference membrane permeability to water, L(pg) or L(pg)[cpa] and the activation energy, E(Lp) or E(Lp)[cpa]) of the Xiphophorus helleri sperm cell membrane were determined. The best-fit membrane permeability parameters at 20 degrees C/min in the absence of CPAs were: L(pg)=0.776 x 10(-15)m3/Ns (0.0046 microm/min atm), and E(Lp)=50.1 kJ/mol (11.97 kcal/mol) (R2=0.997). The corresponding parameters in the presence of 14% glycerol were L(pg)[cpa]=1.063 x 10(-15)m3/Ns (0.0063 microm/min atm), and E(Lp)[cpa]=83.81 kJ/mol (20.04 kcal/mol) (R2=0.997). The parameters in the presence of 10% DMSO were L(pg)[cpa]=1.4 x 10(-15)m3/Ns (0.0083 microm/min atm), and E(Lp)[cpa]=90.96 kJ/mol (21.75 kcal/mol) (R2=0.996). Parameters obtained in this study suggested that the optimal rate of cooling for X. helleri sperm cells in the presence of CPAs ranged from 20 to 35 degrees C/min and were in close agreement with recently published, empirically determined optimal cooling rates.  相似文献   

19.
Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium. Cryopreservation usually results in decreased sperm viability; an optimized protocol for cold storage of epididymides plus sperm cryopreservation has yet to be established. Here, we examined the motility and fertilization potential of cryopreserved, thawed (frozen-thawed) sperm from previously cold-stored mouse epididymides. We also examined the protective effect of sphingosine-1-phosphate (S1P) on sperm viability when S1P was added to the preservation medium during cold storage. We assessed viability of frozen-thawed sperm from mouse epididymides that had been cold-transported domestically or internationally and investigated whether embryos fertilized in vitro with these sperm developed normally when implanted in pseudo-pregnant mice. Our results indicate that frozen-thawed sperm from epididymides cold-stored for up to 48 h maintained high fertilization potential. Fertilization potential was reduced after cold storage for 72 h, but not if S1P was included in the cold storage medium. Live pups were born normally to recipients after in vitro fertilization using frozen-thawed sperm from cold-transported epididymides. In summary, we demonstrate an improved protocol for cold-storage of epididymides that can facilitate transport of genetically engineered-mice and preserve sperm viability after cryopreservation.  相似文献   

20.
Despite some 26 published reports addressing oyster sperm cryopreservation, systematic factor optimization is lacking, and sperm cryopreservation has not yet found application in aquaculture on a commercial scale. In this study, the effects of cooling rate, single or combined cryoprotectants at various concentrations, equilibration time (exposure to cryoprotectant), straw size, and cooling method were evaluated for protocol optimization of shipped sperm samples from diploid oysters. Evaluation of cooling rates revealed an optimal rate of 5 degrees C/min to -30 degrees C followed by cooling at 45 degrees C/min to -80 degrees C before plunging into liquid nitrogen. Screening of single or combined cryoprotectants at various concentrations suggested that a low concentration (2%) of polyethylene glycol (FW 200) was effective in retaining post-thaw motility and fertilizing capability when combined with permeating cryoprotetcants such as dimethyl sulfoxide (DMSO), methanol (MeOH), and propylene glycol (P-glycol). However, polyethylene glycol alone was not as effective as MeOH, DMSO, and P-glycol when using the same methods. The highest post-thaw motility (70%) and percent fertilization (98%) were obtained for samples cryopreserved with 6% MeOH. However, this does not exclude other cryoprotectants such as DMSO or P-glycol identified as effective agents in other studies. There was no significant difference in post-thaw motility between straw sizes of 0.25- and 0.5-ml. Equilibration time (exposure to cryoprotectant) of 60 min could be beneficial when the cryoprotectant concentration is low and solution is added in a step-wise fashion at low temperature. Differences in post-thaw sperm quality (e.g., motility or percent fertilization) among individual males were evident in this research. As a consequence, a generalized classification describing males with different tolerances (broad, intermediate, and narrow) to cryopreservation was developed. This classification could be applied to strain or species differences in tolerances to the cryopreservation process. The present study demonstrated that oyster sperm could be collected and shipped chilled to another facility for cryopreservation, and that it could be shipped back to the hatchery for fertilization performed at a production scale yielding live larvae with >90% fertilization. Given the existence of facilities for commercial-scale cryopreservation of dairy bull sperm, the methods developed in the present study for oysters provide a template for the potential commercialization of cryopreserved sperm in aquatic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号