首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fourier transform NMR pulsed-gradient spin-echo self-diffusion technique was used for studies of nucleotides (AMP, CMP, GMP and UMP) with Li+ or Cs+ added, in 2H2O. 1H-, 7Li- and 133Cs-NMR-based self-diffusion data on the constituents provide a picture of both the degree of ion binding to nucleotides and the self-association of nucleotides in aqueous solution. Self-diffusion coefficients were investigated in a concentration range up to 0.3 molal nucleotide in 2H2O, while keeping the metal ion concentration of Li+ or Cs+ at twice the nucleotide concentration throughout the investigations. The self-association studies reveal that the aggregation constants of the Li salts differ only slightly from the corresponding constants for the disodium salts of the mononucleotides. Within a two-site bound-free model for the counterions and a cooperative indefinite aggregation model for the nucleotides one finds that the degree of ion binding for all these nucleotide systems remains approximately constant, in spite of increasing aggregate concentration. This corresponds to the well-known polyelectrolyte ion condensation behaviour, indicating that large aggregates are formed, supporting previous findings by the present authors on the aggregation behaviour of nucleotides. An observed large effect on the 17O relaxation of water in nucleotide systems can only be reconciled with the presence of relatively large aggregates in solution.  相似文献   

2.
Circular dichroism, absorbance, hypochromicity, and the formation of Mg2+ and Zn2+ complexes have been measured for a series of bisnucleoside oligophosphates that contain adenosine, guanosine, and mixed guanosine/adenosine, guanosine/cytidine, and guanosine/uridine, as well as 7-methylguanosine and ribose-methylated purine nucleosides. All of the metal complex ions have stacking interactions at 2 degrees C, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, pH 8.0. There is a measurable degree of base stacking for all unsubstituted purine nucleotides that differs, however, from that of bases in nucleic acids. The degree of base stacking varies with the length of oligophosphate chains and the state of methylation. The effect of 7-methylation of guanosine is interpreted as causing a switch of nucleic acid base stacking from an atypical to a typical mode, which could be important for cap function in mRNA. The Mg2+ and Zn2+ complexes give rise to characteristic circular dichroism. In all instances excepting 7-methylated bisguanosine oligophosphates, the active secondary structures are disrupted, and in this regard, Zn2+ is more effective than Mg2+. At least two sets of binding sites are involved. A single metal ion is bound tightly. Stability, in terms of equilibrium constants, increases by more than 1000-fold as a function of chain length varying from two to six phosphates. The consequences of methylation are only minor. Electrostatic attraction between metal ions and phosphates is the most likely mechanism of these phenomena as judged by the effect of high ionic strength.  相似文献   

3.
A method for measuring internal nucleoside triphosphate pools of lactococci was optimized and validated. This method is based on extraction of (33)P-labeled nucleotides with formic acid and evaluation by two-dimensional chromatography with a phosphate buffer system for the first dimension and with an H(3)BO(3)-LiOH buffer for separation in the second dimension. We report here the sizes of the ribo- and deoxyribonucleotide pools in laboratory strain MG1363 during growth in a defined medium. We found that purine- and pyrimidine-requiring strains may be used to establish physiological conditions in batch fermentations with altered nucleotide pools and growth rates by addition of nucleosides in different combinations. Addition of cytidine together with inosine to a purine-requiring strain leads to a reduction in the internal purine nucleotide pools and a decreased growth rate. This effect was not seen if cytidine was replaced by uridine. A similar effect was observed if cytidine and inosine were added to a pyrimidine-requiring strain; the UTP pool size was significantly decreased, and the growth rate was reduced. To explain the observed inhibition, the nucleoside transport systems in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K(m) for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition was found between uridine and either cytidine or inosine. These findings suggest that there are two different high-affinity nucleoside transporters, one system responsible for uridine uptake and another system responsible for the uptake of all purine nucleosides and cytidine.  相似文献   

4.
The self-aggregation of the mononucleotides (AMP, CMP, GMP and UMP) and caffeine up to their solubility limit in 2H2O has been monitored through self-diffusion measurements, using the Fourier transform NMR pulsed-gradient spin-echo self-diffusion technique. The data were iteratively fitted to a number of aggregation models. It was concluded that the best agreement between simulations and experiment for the mononucleotides was obtained for a 'semi-isodesmic', indefinite aggregation model (also known as a Type III SEK or cooperative indefinite self-association model), where the first (dimerization) aggregation constant is a magnitude lower than those for the higher aggregation steps. Typical values were 0.4 and 6 l mol-1, respectively. Under these conditions, the main fraction of solute is monomeric throughout the concentration range and the distribution of higher oligomers is very broad. Caffeine self-aggregation is clearly different and is consistent with several aggregation models. The mixed aggregation of caffeine (at a low total concentration) and the mononucleotides was successfully monitored in an extension of the basic study. It was found that caffeine binding to mononucleotide aggregates increases in the series UMP, CMP, GMP and AMP.  相似文献   

5.
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.  相似文献   

6.
The overall goal of this study was to determine the mechanisms by which nucleosides are transported in choroid plexus. Choroid plexus tissue slices obtained from rabbit brain were depleted of ATP with 2,4-dinitrophenol. Uridine and thymidine accumulated in the slices against a concentration gradient in the presence of an inwardly directed Na+ gradient. The Na(+)-driven uptake of uridine and thymidine was saturable with Km values of 18.1 +/- 2.0 and 13.0 +/- 2.3 microM and Vmax values of 5.5 +/- 0.3 and 1.0 +/- 0.2 nmol/g/s, respectively. Na(+)-driven uridine uptake was inhibited by naturally occurring ribo- and deoxyribonucleosides (adenosine, cytidine, and thymidine) but not by synthetic nucleoside analogs (dideoxyadenosine, dideoxycytidine, cytidine arabinoside, and 3'-azidothymidine). Both purine (guanosine, inosine, formycin B) and pyrimidine nucleosides (uridine and cytidine) were potent inhibitors of Na(+)-thymidine transport with IC50 values ranging between 5 and 23 microM. Formycin B competitively inhibited Na(+)-thymidine uptake and thymidine trans-stimulated formycin B uptake. These data suggest that both purine and pyrimidine nucleosides are substrates of the same system. The stoichiometric coupling ratios between Na+ and the nucleosides, guanosine, uridine, and thymidine, were 1.87 +/- 0.10, 1.99 +/- 0.35, and 2.07 +/- 0.09, respectively. The system differs from Na(+)-nucleoside co-transport systems in other tissues which are generally selective for either purine or pyrimidine nucleosides and which have stoichiometric ratios of 1. This study represents the first direct demonstration of a unique Na(+)-nucleoside co-transport system in choroid plexus.  相似文献   

7.
A rapid, simple, and sensitive radiochemical assay for the measurement of purine or pyrimidine nucleoside kinases (EC 2.7.1.-) is described. The substrate (thymidine, deoxyuridine, deoxycytidine, deoxyguanosine, deoxyadenosine, uridine, cytidine, and adenosine) is separated from the product (the respective 5′-nucleotide) on neutral alumina columns which retain the nucleotides but not the nucleosides. The nucleotides are recovered by elution with 0.4 m sodium phosphate buffer, pH 7.6.  相似文献   

8.
The effect of cis-DDP (cis-diamminedichloroplatinum(II)), trans-DDP (trans-diamminedichloroplatinum(II)), SPC (spermine-platinum(II) complex), and K2PtCl4 on the ribomononucleotide and RNA metabolism was studied. When Ehrlich ascites tumor cells were preincubated with the aforementioned compounds and then labeled with [C14]uridine a clear-cut suppression of the radioactive labeling of RNA was observed. As radioactivity incorporated into the pool of the free uridine nucleotides in the cells treated with platinum compounds was even higher in comparison with that of the non-treated cells a conclusion may be drawn with certainty that the platinum compounds studied inhibit RNA biosynthesis. It was also found that under the effect of these compounds in the in vivo-assessed rate of the conversion of uridine nucleotides into cytidine nucleotides was considerably diminished. Using NaH14CO3 as a radioactive precursor it was shown that platinum compounds also inhibited purine biosynthesis de novo, in particular the conversion of IMP into GMP and AMP. The pronounced inhibitory effect of the platinum compounds on essential steps of the pyrimidine and purine biosynthesis de novo may be at least partly responsible for the firmly established inhibition in the present study of RNA biosynthesis by platinum compounds. The inhibition of the synthesis of the mononucleotides and RNA by the platinum compounds may be closely related to their cytostatic and cytotoxic activities.  相似文献   

9.
The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine if substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.  相似文献   

10.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

11.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

12.
Metabolism of cytidine and uridine in bean leaves   总被引:3,自引:3,他引:0       下载免费PDF全文
Ross C  Cole CV 《Plant physiology》1968,43(8):1227-1231
The metabolism of cytidine-2-14C and uridine-2-14C was studied in discs cut from leaflets of bean plants (Phaseolus vulgaris L.). Cytidine was degraded to carbon dioxide and incorporated into RNA at about the same rates as was uridine. Both nucleosides were converted into the same soluble nucleotides, principally uridine diphosphate glucose, suggesting that cytidine was rapidly deaminated to uridine and then metabolized along the same pathways. However, cytidine was converted to cytidine diphosphate and cytidine triphosphate more effectively than was uridine. Cytidine also was converted into cytidylic acid of RNA much more extensively and into RNA uridylic acid less extensively than was uridine. Azaserine, an antagonist of reactions involving glutamine (including the conversion of uridine triphosphate to cytidine triphosphate), inhibited the conversion of cytidine into RNA uridylic acid with less effect on its incorporation into cytidylic acid. On the other hand, it inhibited the conversion of orotic acid into RNA cytidylic acid much more than into uridylic acid. The results suggest that cytidine is in part metabolized by direct conversion to uridine and in part by conversion to cytidine triphosphate through reactions not involving uridine nucleotides.  相似文献   

13.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

14.
Rapid kinetic techniques were used to study the transport and salvage of uridine and other nucleosides in mouse spleen cells. Spleen cells express two nucleoside transport systems: (1) the non-concentrative, symmetrical, Na+-independent transporter with broad substrate specificity, which has been found in all mammalian cells and is sensitive to inhibition by dipyridamole and nitrobenzylthioinosine; and (2) a Na+-dependent nucleoside transport, which is specific for uridine and purine nucleosides and resistant to inhibition by dipyridamole and nitrobenzylthioinosine. The kinetic properties of the two transporters were determined by measuring uridine influx in ATP-depleted cells and dipyridamole-treated cells, respectively. The Michaelis-Menten constants for Na+-independent and -dependent transport were about 40 and 200 microM, respectively, but the first-order rate constants were about the same for both transport systems. Nitrobenzylthioinosine-sensitivity of the facilitated nucleoside transporter correlated with the presence of about 10,000 high-affinity (Kd = 0.6 nM) nitrobenzylthioinosine-binding sites per cell. The turnover number of the nitrobenzylthioinosine-sensitive nucleoside transporter was comparable to that of mouse P388 leukemia cells. The activation energy of this transporter was 20 kcal/mol. Entry of uridine via either of the transport routes was rapidly followed by its phosphorylation and conversion to UTP. The Michaelis-Menten constant for the in situ phosphorylation of uridine was about 50 microM and the first-order rate constants for phosphorylation and transport were about the same. The spleen cells also efficiently salvaged adenosine, adenine, and hypoxanthine, but not thymidine.  相似文献   

15.
Respiration-deficient mutants (Rho-, petite) of Saccharomyces carlsbergensis were obtained by treatment with trypaflavin (euflavine). Dried cells of these mutants phosphorylated mononucleotides to their triphosphates and further formed not only cytidine 5'-diphosphate-choline, but also sugar nucleotides, such as uridine 5'-diphosphate-glucose, guanosine 5'-diphosphate-mannose, etc. The activities were the same or slightly greater than those of the wild strain. These results showed that energy (adenosine 5'-triphosphate) necessary for phosphorylation of mononucleotides was sufficiently supplied by the glycolysis system.  相似文献   

16.
A non-specific nucleoside hydrolase from Escherichia coli (RihC) has been cloned, overexpressed, and purified to greater than 95% homogeneity. Size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis show that the protein exists as a homodimer. The enzyme showed significant activity against the standard ribonucleosides with uridine, xanthosine, and inosine having the greatest activity. The Michaelis constants were relatively constant for uridine, cytidine, inosine, adenosine, xanthosine, and ribothymidine at approximately 480 μM. No activity was exhibited against 2′-OH and 3′-OH deoxynucleosides. Nucleosides in which additional groups have been added to the exocyclic N6 amino group also exhibited no activity. Nucleosides lacking the 5′-OH group or with the 2′-OH group in the arabino configuration exhibited greatly reduced activity. Purine nucleosides and pyrimidine nucleosides in which the N7 or N3 nitrogens respectively were replaced with carbon also had no activity.  相似文献   

17.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The human equilibrative nucleoside transporters I and 2 (hENT1, hENT2) share 50% amino acid identity and exhibit broad selectivities, accepting purine and pyrimidine nucleosides as permeants. The permeant selectivity of hENT2 is less well understood because of the low abundance of the native transporter in cells amenable to functional analysis. Recent studies of hENT2 produced in recombinant form in functional expression systems have shown that it differs from hENT1 in that it transports nucleobases. To further understand the structural requirements for permeant interaction with hENT2, we compared the relative abilities of uridine, cytidine, and their analogues to inhibit transport of [3H]uridine by recombinant hENT1 and hENT2 produced in yeast. hENT1 and hENT2 tolerated halogen modification at the 5 position of the base and the 2' and 5' positions of the ribose moieties of uridine whereas removal of the hydroxyl group at the 3' position of the ribose moiety of uridine eliminated interaction with both transporters. hENT2 displayed a lower ability, compared with hENT1, to interact with cytidine and cytidine analogues, suggesting a low tolerance for the presence of the amino group at the 4 position of the base.  相似文献   

19.
The activation energies for the pseudorotation of the furanose ring in adenosine, guanosine, inosine and xanthosine dissolved in liquid deuteroammonia have been determined by analysis of the longitudinal relaxation rates of the single tertiary carbons between +40 degrees C and minus 60 degrees C. For the purine ribosides the average activation energy was found to be 4.7 plus or minus 0.5 kcal x mol-1 (20 plus or minus 2 kJ x mol-1). For the pyrimidine nucleosides cytidine and uridine the respective activation energy should be higher since it could not be determined by 13-C relaxation measurements. This result can be explained by the formation of a hydrogen bond between the 5'-hydroxymethyl group and the base. In adenosine, guanosine, inosine and xanthosine the relaxation rates of C(5') are smaller than all others thus excluding the formation of a hydrogen bond between the purine base and the 5'-hydroxymethyl group of a strength comparable to the one suggested for cytidine and uridine.  相似文献   

20.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号