首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gruis D  Schulze J  Jung R 《The Plant cell》2004,16(1):270-290
The role(s) of specific proteases in seed protein processing is only vaguely understood; indeed, the overall role of processing in stable protein deposition has been the subject of more speculation than direct investigation. Seed-type members of the vacuolar processing enzyme (VPE) family were hypothesized to perform a unique function in seed protein processing, but we demonstrated previously that Asn-specific protein processing in developing Arabidopsis seeds occurs independently of this VPE activity. Here, we describe the unexpected expression of vegetative-type VPEs in developing seeds and test the role(s) of all VPEs in seed storage protein accumulation by systematically stacking knockout mutant alleles of all four members (alphaVPE, betaVPE, gammaVPE, and deltaVPE) of the VPE gene family in Arabidopsis. The complete removal of VPE function in the alphavpe betavpe gammavpe deltavpe quadruple mutant resulted in a total shift of storage protein accumulation from wild-type processed polypeptides to a finite number of prominent alternatively processed polypeptides cleaved at sites other than the conserved Asn residues targeted by VPE. Although alternatively proteolyzed legumin-type globulin polypeptides largely accumulated as intrasubunit disulfide-linked polypeptides with apparent molecular masses similar to those of VPE-processed legumin polypeptides, they showed markedly altered solubility and protein assembly characteristics. Instead of forming 11S hexamers, alternatively processed legumin polypeptides were deposited primarily as 9S complexes. However, despite the impact on seed protein processing, plants devoid of all known functional VPE genes appeared unchanged with regard to protein content in mature seeds, relative mobilization rates of protein reserves during germination, and vegetative growth. These findings indicate that VPE-mediated Asn-specific proteolytic processing, and the physiochemical property changes attributed to this specific processing step, are not required for the successful deposition and mobilization of seed storage protein in the protein storage vacuoles of Arabidopsis seeds.  相似文献   

2.
We have investigated the transport of storage proteins, their processing proteases, and the Vacuolar Sorting Receptor-1/Epidermal Growth Factor Receptor-Like Protein1 (VSR-1/ATELP1) receptor during the formation of protein storage vacuoles in Arabidopsis thaliana embryos by means of high-pressure freezing/freeze substitution, electron tomography, immunolabeling techniques, and subcellular fractionation. The storage proteins and their processing proteases are segregated from each other within the Golgi cisternae and packaged into separate vesicles. The storage protein-containing vesicles but not the processing enzyme-containing vesicles carry the VSR-1/ATELP1 receptor. Both types of secretory vesicles appear to fuse into a type of prevacuolar multivesicular body (MVB). We have also determined that the proteolytic processing of the 2S albumins starts in the MVBs. We hypothesize that the compartmentalized processing of storage proteins in the MVBs may allow for the sequential activation of processing proteases as the MVB lumen gradually acidifies.  相似文献   

3.
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.  相似文献   

4.
Proteases of the caspase family are implicated in mammalian apoptosis and constitute a protease cascade. We characterized caspase-4 (TX/ICH-2/ICErelII) and caspase-5 (ICErelIII/TY), which are most closely related to caspase-1 (ICE) among the caspase family. Although overexpression of caspase-4 and caspase-5 induced apoptosis, confirming previous observations, this apoptosis was not inhibited by a caspase-1-specific tetrapeptide inhibitor (Ac-YVAD-CHO), suggesting that caspase-4 and caspase-5 have different substrate specificities from caspase-1 and also that caspase-4- and caspase-5-induced apoptosis is not mediated by caspase-1. CrmA, a cowpox virus-derived caspase-1 inhibitor that prevents apoptosis induced by various stimuli, was cleaved by caspase-4 and caspase-5, and inhibited their proteolytic activity as assessed by cleavage of pro-caspase-3 (pro-CPP32/Yama/apopain). Thus, caspase-4 and caspase-5 are CrmA-inhibitable proteases like caspase-1 and might be involved in apoptosis.  相似文献   

5.
Interleukin-1β converting enzyme (ICE) is the first enzyme of a new family of cysteine endoproteinases to be isolated and characterized. An overview of the structure and activity of ICE is outlined together with highlights of salient features common to members of each of the family members. J. Cell. Biochem. 64:2–10. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.  相似文献   

7.
Vacuolar processing enzyme (VPE) is a Cys proteinase responsible for the maturation of vacuolar proteins. Arabidopsis thaliana deltaVPE, which was recently found in the database, was specifically and transiently expressed in two cell layers of the seed coat (ii2 and ii3) at an early stage of seed development. At this stage, cell death accompanying cell shrinkage occurs in the ii2 layer followed by cell death in the ii3 layer. In a deltaVPE-deficient mutant, cell death of the two layers of the seed coat was delayed. Immunocytochemical analysis localized deltaVPE to electron-dense structures inside and outside the walls of seed coat cells that undergo cell death. Interestingly, deltaVPE in the precipitate fraction from young siliques exhibits caspase-1-like activity, which has been detected in various types of plant cell death. Our results suggest that, at the early stage of seed development, deltaVPE is involved in cell death of limited cell layers, the purpose of which is to form a seed coat.  相似文献   

8.
Proproteins of various vacuolar proteins are post-translationally processed into mature forms by the action of a unique vacuolar processing enzyme. If such a processing enzyme is transported to vacuoles together with proprotein substrates, the enzyme must be a latent form. Immunocytochemical localization of a vacuolar processing enzyme, a 37-kD cysteine proteinase, in the endosperm of maturing castor bean seeds places the enzyme in the vacuolar matrix, where a variety of proproteins is also present. To characterize a molecular structure of vacuolar processing enzyme, we isolated a cDNA for the enzyme. Deduced primary structure of a 55-kD precursor is 33% identical to a putative cysteine proteinase of the human parasite Schistosoma mansoni. The precursor is composed of a signal peptide, a 37-kD active processing enzyme domain, and a propeptide fragment. Although the precursor expressed in Escherichia coli has no vacuolar processing activity, a 36-kD immunopositive protein expressed in E. coli is active. These results suggest that the activation of the vacuolar processing enzyme requires proteolytic cleavage of a 14-kD C-terminal propeptide fragment of the precursor.  相似文献   

9.
Vicilin, a 7S globulin of Pisum sativum L. seed, accumulates in protein-storage vacuoles (protein bodies) of cotyledonary storage-parenchyma cells. The synthesis and proteolytic processing of various genetically engineered proteins within the leaf and seed of a heterologous (tobacco, Nicotiana tabacum L.) host was examined. A modified vicilin gene, in which the DNA sequence corresponding to the signal peptide was removed, resulted in a polypeptide of 50 kDa in the tobacco leaf and seed; none of the normal proteolytic cleavage products characteristic of expression of an unmodified vicilin gene were obtained. Likewise, no vacuolar accumulation of this mutant vicilin occurred in leaf protoplasts, which is also supportive of the predicted cytosolic localization for this protein. In-frame deletions were made within the region of the vicilin gene encoding the mature protein, to eliminate the N-terminal 28 and 121 amino acids and the C-terminal 69 residues, while maintaining an intact signal peptide. All of these mature deletion-mutant proteins were accumulated to only low levels in the host, but exhibited the predicted molecular weight and underwent some normal proteolytic processing in the seed. Mutant vicilin proteins having deletions in either the N-terminus (NT 121) or C-terminus (CT 69) were not found in appreciable amounts within the vacuolar fraction of transgenic tobacco leaf protoplasts, perhaps due to protein degradation in this compartment. Compared with the intact vicilin, oligomer assembly of the C-terminal deletion-mutant protein was disrupted in leaf cells, which may have further affected protein stability. The deletions of mature vicilin protein led to a much less dramatic reduction in protein accumulation in transgenic tobacco seed. Further, the same mutant proteins expressed within transgenic tobacco seed exhibited correct and highly specific proteolytic processing.Abbreviations CaMV cauliflower mosaic virus - Mr relative molecular mass We gratefully acknowledge the technical assistance from Maria J. Still and help from M.R.I. Khan. Part of this research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Operating and Equipment Grants to A.R.K.  相似文献   

10.
The proprotein precursors of storage proteins are post-translationally processed to produce their respective mature forms within the protein storage vacuoles of maturing seeds. To investigate the processing mechanism in vivo, we isolated Arabidopsis mutants that accumulate detectable amounts of the precursors of the storage proteins, 12 S globulins and 2 S albumins, in their seeds. All six mutants isolated have a defect in the beta VPE gene. VPE (vacuolar processing enzyme) is a cysteine proteinase with substrate specificity toward an asparagine residue. We further generated various mutants lacking different VPE isoforms: alpha VPE, beta VPE, and/or gamma VPE. More than 90% of VPE activity is abolished in the beta vpe-3 seeds, and no VPE activity is detected in the alpha vpe-1/beta vpe-3/gamma vpe-1 seeds. The triple mutant seeds accumulate no properly processed mature storage proteins. Instead, large amounts of storage protein precursors are found in the seeds of this mutant. In contrast to beta vpe-3 seeds, which accumulate both precursors and mature storage proteins, the other single (alpha vpe-1 and gamma vpe-1) and double (alpha vpe-1/gamma vpe-1) mutants accumulate no precursors in their seeds at all. Therefore, the vegetative VPEs, alpha VPE and gamma VPE, are not necessary for precursor processing in the presence of beta VPE, but partly compensates for the deficiency in beta VPE in beta vpe-3 seeds. In the absence of functional VPEs, a proportion of pro2S albumin molecules are alternatively cleaved by aspartic proteinase. This cleavage by aspartic proteinase is promoted by the initial processing of pro2S albumins by VPE. Our overall results suggest that seed-type beta VPE is most essential for the processing of storage proteins, and that the vegetative-type VPEs and aspartic proteinase complement beta VPE activity in this processing.  相似文献   

11.
We have discovered a ubiquitin (Ub)-specific cysteine protease encoded within the N-terminal approximately 500 residues of the UL36 gene product, the largest (3164 aa) tegument protein of herpes simplex virus 1 (HSV-1). Enzymatic activity of this fragment, UL36USP, is detectable only after cleavage of UL36USP from full-length UL36 and occurs late during viral replication. UL36USP bears no homology to known deubiquitinating enzymes (DUBs) or Ub binding proteins. Sequence alignment of the large tegument proteins across the family Herpesviridae indicates conservation of key catalytic residues amongst these viruses. Recombinant UL36USP exhibits hydrolytic activity toward Ub-AMC and ubiquitinated branched peptides in vitro. In addition, recombinant UL36USP can cleave polyUb chains and appears to be specific for Lys48 linkages. Mutation of the active site cysteine residue (Cys65) to alanine abolishes this enzymatic activity. The lack of homology between UL36USP and eukaryotic DUBs makes this new family of herpesvirus ubiquitin-specific proteases attractive targets for selective inhibition.  相似文献   

12.
The modification of cellular proteins by ubiquitin (Ub) is an important event that underlies protein stability and function in eukaryotes. Protein ubiquitylation is a dynamic and reversible process; attached Ub can be removed by deubiquitylating enzymes (DUBs), a heterogeneous group of cysteine proteases that cleave proteins precisely at the Ub–protein bond. Two families of DUBs have been identified previously. Here, we describe new, highly specific Ub iso-peptidases, that have no sequence homology to known DUBs, but which belong to the OTU (ovarian tumour) superfamily of proteins. Two novel proteins were isolated from HeLa cells by affinity purification using the DUB-specific inhibitor, Ub aldehyde (Ubal). We have named these proteins otubain 1 and otubain 2, for OTU-domain Ubal-binding protein. Functional analysis of otubains shows that the OTU domain contains an active cysteine protease site.  相似文献   

13.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

14.
Proteolytic cleavage of virus-specific proteins is a universal phenomenon, which is widely expanded among different viruses including bacterial, plant, animal, and human viruses. Proteolytic processing of viral proteins involves the cleavage in strictly specific sites (proteolytic sites) of polyprotein molecules. Specificity of this processing is a doubly dependent event controlled by the amino acids of proteolytic sites and the presence of adequate proteinases. Host-originated and/or virus-coded proteinases are known to perform the cleavage of viral polypeptides. Conformational and functional behaviour of many virus proteins is regulated by proteolytic modification; as a result, the reproduction of mature virions and the infection pathways are directly controlled. Molecular mechanisms of site-specific proteolytic processing of viral proteins are proposed as a target to be attacked for chemotherapeutic virus inhibition and to be modified for vaccine design. The approaches are analysed to realise this antiviral strategy, and prospects for its development are discussed.  相似文献   

15.
Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.

A subunit of the vacuolar H+-ATPase regulating endomembrane luminal pH homeostasis plays a fundamental role in post-Golgi trafficking of rice seed storage proteins.  相似文献   

16.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

17.
A chemoenzymatic synthesis was developed for new highly specific fluorogenic substrates for cysteine proteases of the papain family, Abz-Phe-Ala-pNA (I) and Glp-Phe-Ala-Amc (II) (Abz, pNA, Glp, and Amc are o-aminobenzoyl, p-nitroanilide, pyroglutamyl, and 4-amino-7-methylcoumaride, respectively). Substrate (I) was obtained in an aqueous-organic medium using native chymotrypsin. Substrate (II) was synthesized in DMF-MeCN by the treatment with chymotrypsin and subtilisin Carlsberg immobilized on polyvinyl alcohol cryogel. Hydrolysis of substrate (I) with papain, ficin, and bromelain was accompanied by a 15-fold increase in fluorescence intensity, and that of substrate (II), by a change in the fluorescence spectrum. Unambiguity of enzymatic hydrolysis of the substrates after the Ala residue was shown. The specific activity of the substrate hydrolysis with papain, bromelain, and ficin and was determined. Papain showed the greatest activity for both substrates. The activity of all proteases under study was essentially higher for substrate (II), than for substrate (I). The lowest detectable papain concentrations were 2.4 × 10?10 M for (I) and 1.2 × 10?11 M for (II). A high selectivity of cysteine proteases for Glp-Phe-Ala-Amc was established.  相似文献   

18.
19.
Papain-like cysteine proteases have been shown to have essential roles in parasitic protozoa and are under study as promising drug targets. Five genes were identified by sequence similarity search to be homologous to the cysteine protease family in the ongoing Babesia bigemina genome sequencing project database and were compared with the annotated genes from the complete bovine piroplasm genomes of Babesia bovis, Theileria annulata, and Theileria parva. Multiple genome alignments and sequence analysis were used to evaluate the molecular evolution events that occurred in the C1 family of cysteine proteases in these piroplasms of veterinary importance. BbiCPL1, one of the newly identified cysteine protease genes in the B. bigemina genome was expressed in Escherichia coli and shows activity against peptide substrates. Considerable differences were observed in the cysteine protease family between Babesia and Theileria genera, and this may partially explain the diverse infection mechanisms of these tick-borne diseases.  相似文献   

20.
《Phytochemistry》1987,26(3):627-631
The highly specific proteolytic breakdown observed upon prolonged treatment of pea legumin and pea and jack bean vicilin with a thiol endopeptidase purified from mature lupin seeds has been studied in detail. Proteolytic cleavage occurred in the acidic subunits of pea legumin, whereas the basic subunits were unaffected. Jack bean vicilin (M, 47 K) was cleaved near the middle of the polypeptide chain, whereas pea vicilin (M, 50 K) was cleaved into two fragments of M, 30 K and 20 K, respectively. The 30 K M, polypeptide chain contained covalently linked carbohydrate and had an N-terminal sequence suggesting that cleavage had taken place between the α and β region of the vicilin 50 K M, polypeptide as previously described in vivo. These results suggested that the cleavage specificity of lupin endopeptidase was in the proximity of paired arginine amino acid residues.The changes in the vicilin polypeptides due to proteolytic cleavage by lupin enzyme and those occurring during germination of pea seeds are also reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号