共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins. 相似文献
2.
Important for the understanding of the functional properties of the iron-sulfur scaffold IscU is knowledge of the structure and dynamics of this protein class. Structural characterization of Thermotoga maritima IscU by CD (Mansy, S. S., Wu, G., Surerus, K. K., and Cowan, J. A. (2002) J. Biol. Chem. 277, 21397-21404) and high resolution NMR (Bertini, I., Cowan, J. A., Del Bianco, C., Luchinat, C., and Mansy, S. S. (2003) J. Mol. Biol. 331, 907-924) yielded data indicating a high degree of secondary structure. However, the latter also revealed IscU to exist in a dynamic equilibrium between two or more distinct conformations, possibly existing in a molten globule state. Herein, we further characterize the molten globule characteristics of T. maritima IscU by near-ultraviolet circular dichroism, 1-anilino-8-naphthalenesulfonic acid binding, free energy of unfolding, hydrodynamic radius measurements, and limited tryptic digestion. The data suggest unusual dynamic behavior that is not fully consistent with typical protein states such as fully folded, fully unfolded, or molten globule. For instance, the existence of a stable tertiary fold is supported by near-UV CD spectra and hydrodynamic radius measurements, whereas other data are less clearly interpretable and may be viewed as consistent with either a molten globule or fully folded state. However, all of the data are consistent with our previous hypothesis of a protein sampling multiple discrete tertiary conformations in which these structural transitions occur on a "slow" time scale. To describe such proteins, we introduce the term multiple discrete conformers. 相似文献
3.
IscA is a key member of the iron-sulfur cluster assembly machinery in prokaryotic and eukaryotic organisms; however, the physiological function of IscA still remains elusive. In the present paper we report the in vivo evidence demonstrating the iron-binding activity of IscA in Escherichia coli cells. Supplement of exogenous iron (1 μM) in M9 minimal medium is sufficient to maximize the iron binding in IscA expressed in E. coli cells under aerobic growth conditions. In contrast, IscU, an iron-sulfur cluster assembly scaffold protein, or CyaY, a bacterial frataxin homologue, fails to bind any iron in E. coli cells under the same experimental conditions. Interestingly, the strong iron-binding activity of IscA is greatly diminished in E. coli cells under anaerobic growth conditions. Additional studies reveal that oxygen in medium promotes the iron binding in IscA, and that the iron binding in IscA in turn prevents formation of biologically inaccessible ferric hydroxide under aerobic conditions. Consistent with the differential iron-binding activity of IscA under aerobic and anaerobic conditions, we find that IscA and its paralogue SufA are essential for the iron-sulfur cluster assembly in E. coli cells under aerobic growth conditions, but not under anaerobic growth conditions. The results provide in vivo evidence that IscA may act as an iron chaperone for the biogenesis of iron-sulfur clusters in E. coli cells under aerobic conditions. 相似文献
4.
Native x-ray diffraction data from single crystals of inactive aconitase from pig heart (Mr 80,000) have been collected on oscillation films to 2.7 A. Analysis shows that significant measurements of the anomalous scattering signal from the Fe-S cluster in the enzyme are available in the film data. The 5.0-A resolution anomalous difference Patterson function contains vectors for one Fe-S cluster (one aconitase molecule) per asymmetric unit in space group P2(1)2(1)2 with a = 173.6, b = 72.0, and c = 72.7 A. At 2.7-A resolution, the vector map is best interpreted by three Fe sites separated from each other by less than 3 A. The single-crystal diffraction data thus confirm the presence of a 3Fe center in the inactive form of aconitase. Furthermore, the data provide crystallographic evidence that 3Fe clusters exhibit structural heterogeneity. The Fe-Fe vectors cannot be interpreted in terms of 4-A distances as observed for the [3Fe-3S] cluster in Azotobacter ferrodoxin (Ghosh, D., O'Donnell, S., Furey, W., Robbins, A. H., and Stout, C. D. (1982) J. Mol. Biol. 158, 73-109). The results are therefore in agreement with a [3Fe-4S] cluster having 2.7-A Fe-Fe distances (Beinert, H., Emptage, M. H., Dreyer, J.-L., Scott, R. A., Hahn, J. E., Hodgson, K. O., and Thomson, A. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 393-396). However, the data do not unambiguously discriminate between this model and other 3Fe clusters having short Fe-Fe distances. 相似文献
5.
Genetic evidence has indicated that Isc proteins play an important role in iron-sulfur cluster biogenesis. In particular, IscU is believed to serve as a scaffold for the assembly of a nascent iron-sulfur cluster that is subsequently delivered to target iron-sulfur apoproteins. We report the characterization of an IscU from Thermatoga maritima, an evolutionarily ancient hyperthermophilic bacterium. The stabilizing influence of a D40A substitution allowed characterization of the holoprotein. M?ssbauer (delta = 0.29 +/- 0.03 mm/s, DeltaE(Q) = 0.58 +/- 0.03 mm/s), UV-visible absorption, and circular dichroism studies of the D40A protein show that T. maritima IscU coordinates a [2Fe-2S]2+ cluster. Thermal denaturation experiments demonstrate that T. maritima IscU is a thermally stable protein with a thermally unstable cluster. This is also the first IscU type domain that is demonstrated to possess a high degree of secondary and tertiary structure. CD spectra indicate 36.7% alpha-helix, 13.1% antiparallel beta-sheet, 11.3% parallel beta-sheet, 20.2% beta-turn, and 19.1% other at 20 degrees C, with negligible spectral change observed at 70 degrees C. Cluster coordination also has no effect on the secondary structure of the protein. The dispersion of signals in 1H-15N heteronuclear single quantum correlation NMR spectra of wild type and D40A IscU supports the presence of significant tertiary structure for the apoprotein, consistent with a scaffolding role, and is in marked contrast to other low molecular weight Fe-S proteins where cofactor coordination is found to be necessary for proper protein folding. Consistent with the observed sequence homology and proposed conservation of function for IscU-type proteins, we demonstrate T. maritima IscU-mediated reconstitution of human apoferredoxin. 相似文献
6.
Dos Santos PC Smith AD Frazzon J Cash VL Johnson MK Dean DR 《The Journal of biological chemistry》2004,279(19):19705-19711
The NifU protein is a homodimer that is proposed to provide a molecular scaffold for the assembly of [Fe-S] clusters uniquely destined for the maturation of the nitrogenase catalytic components. There are three domains contained within NifU, with the N-terminal domain exhibiting a high degree of primary sequence similarity to a related family of [Fe-S] cluster biosynthetic scaffolds designated IscU. The C-terminal domain of NifU exhibits sequence similarity to a second family of proposed [Fe-S] cluster biosynthetic scaffolds designated Nfu. Genetic experiments described here involving amino acid substitutions within the N-terminal and C-terminal domains of NifU indicate that both domains can separately participate in nitrogenase-specific [Fe-S] cluster formation, although the N-terminal domain appears to have the dominant function. These in vivo experiments were supported by in vitro [Fe-S] cluster assembly and transfer experiments involving the activation of an apo-form of the nitrogenase Fe protein. 相似文献
7.
Gong Wu Sheref S. Mansy Craig Hemann Russ Hille Kristene K. Surerus J. Cowan 《Journal of biological inorganic chemistry》2002,7(4-5):526-532
Eukaryotic Isa1 is one of several mitochondrial proteins that have been implicated in Fe-S cluster assembly paths in vivo. We report the first biochemical characterization of an eukaryotic member of this family and discuss this in the context of results from in vivo studies and studies of bacterial homologues. Schizosaccharomyces pombe Isa1 is a multimeric protein carrying [2Fe-2S](2+) clusters that have been characterized by M?ssbauer and optical spectroscopic studies. Complex formation with a redox-active ferredoxin has been identified through crosslinking experiments and the coordination chemistry and stability of the native clusters has been investigated through site-directed mutagenesis and spectroscopic analysis. Electronic supplementary material to this paper, containing M?ssbauer and UV-visible spectra for mutant Isa1 proteins, can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0330-2. 相似文献
8.
Spinach ferredoxin was modified chemically with trinitrobenzene sulfonic acid (TNBS), a reagent which reacts specifically with amino groups. The trinitrophenylated ferredoxin (TNP-Fd) can accept electrons from Photosystem I as indicated by its full activity in the photoreduction of cytochrome . The modified protein is inactive, however, in the photoreduction of NADP and cannot form a complex with the flavoprotein, ferredoxin: NADP oxidoreductase. The data presented indicate that the inactivity of the modified protein is the result of modification of a single amino group. 相似文献
9.
IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A. The crystals belong to the space group P3(2)21 and have unit cell dimensions a=b=66.104 A, c=150.167 A (alpha=beta=90 degrees, gamma=120 degrees ). The structure was solved using single-wavelength anomalous dispersion (SAD) phasing of a selenomethionyl derivative, and the IscA model was refined to R=21.4% (Rfree=25.4%). IscA exists as an (alpha1alpha2)2 homotetramer with the (alpha1alpha2) dimer comprising the asymmetric unit. Cys35, implicated in Fe-S cluster assembly, is located in a central cavity formed at the tetramer interface with the gamma-sulfur atoms of residues from the alpha1 and alpha2' monomers (and alpha1'alpha2) positioned close to one another (approximately equal 7 A). C-terminal residues 99-107 are disordered, and the exact positions of Cys99 and Cys101 could not be determined. However, computer modeling of C-terminal residues in the tetramer suggests that Cys99 and Cys101 in the alpha1 monomer and those of the alpha1' monomer (or alpha2 and alpha2') are positioned sufficiently close to coordinate [2Fe-2S] clusters between the two dimers, whereas this is not possible within the (alpha1alpha2) or (alpha1'alpha2') dimer. This symmetrical arrangement allows for binding of two [2Fe-2S] clusters on opposite sides of the tetramer. Modeling further reveals that Cys101 is positioned sufficiently close to Cys35 to allow Cys35 to participate in cluster assembly, formation, or transfer. 相似文献
10.
Iron-sulfur clusters-containing proteins participate in many cellular processes, including crucial biological events like DNA synthesis and processing of dioxygen. In most iron-sulfur proteins, the clusters function as electron-transfer groups in mediating one-electron redox processes and as such they are integral components of respiratory and photosynthetic electron transfer chains and numerous redox enzymes involved in carbon, oxygen, hydrogen, sulfur and nitrogen metabolism. Recently, novel regulatory and enzymatic functions of these proteins have emerged. Iron-sulfur cluster proteins participate in the control of gene expression, oxygen/nitrogen sensing, control of labile iron pool and DNA damage recognition and repair. Their role in cellular response to oxidative stress and as a source of free iron ions is also discussed. 相似文献
11.
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein–protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.Abbreviations AdoMet S-adenosylmethionine - APS adenosine-5-phosphosulfate - BioB biotin synthase - DAF deazaflavin - DTB dethiobiotin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - hisIscU/A six histidine residues at the N-terminus of IscU/A - PCR polymerase chain reaction - PLP pyridoxal 5-phosphate - SufAhis six histidine residues at the C-terminus of SufA 相似文献
12.
Thioredoxin reductase system mediates iron binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU 总被引:1,自引:0,他引:1
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes. Previously, IscA was characterized as an alternative iron-sulfur cluster assembly scaffold, as purified IscA can host transient iron-sulfur clusters. However, recent studies indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU (Ding H., Clark, R. J., and Ding, B. (2004) J. Biol. Chem. 279, 37499-37504). To further elucidate the roles of IscA in the biogenesis of iron-sulfur clusters, we reevaluate the iron binding activity of IscA under physiologically relevant conditions. The results indicate that in the presence of the thioredoxin reductase system, Escherichia coli IscA binds iron with an iron association constant of 2.0 x 10(19) M(-1) in vitro. Whereas all three components (thioredoxin 1, thioredoxin reductase and NADPH) in the thioredoxin reductase system are essential for mediating the iron binding in IscA, only catalytic amounts of thioredoxin 1 and thioredoxin reductase are required. In contrast, IscU fails to bind iron in the presence of the thioredoxin reductase system, suggesting that the iron binding in IscA is specific. Nevertheless, the thioredoxin reductase system can promote the iron-sulfur cluster assembly in IscU in the presence of the iron-loaded IscA, cysteine desulfurase (IscS), and L-cysteine, demonstrating a physiologically relevant system for the biogenesis of iron-sulfur clusters. The results provide additional evidence for the hypothesis that IscA is capable of recruiting intracellular "free" iron and delivering the iron for the iron-sulfur cluster assembly in IscU. 相似文献
13.
14.
Ferredoxin and the flavoprotein, ferredoxin: NADP reductase, have been covalently linked by incubation in the presence of a water soluble carbodiimide. The cross-linking reaction yields an adduct having a 1:1 stoichiometry. The adduct has depressed levels of diaphorase and NADPH oxidase activity and is inactive in reduction of cytochrome c using NADPH as an electron donor. Thus, although similar to an adduct described by Zanetti and coworkers [J Biol Chem 259: 6153–6157 (1984)] in its stoichiometry, the adduct described herein has significantly different enzymatic properties. It is suggested that this may be a reflection of differences in the interaction between the two proteins resulting from differences in experimental conditions in which the two adducts were prepared.Abbreviations Fd
ferredoxin
- Fp
ferredoxin: NADP reductase
- Fd
Fp covalently linked Fd-Fp adduct
- Fd:Fp
noncovalently linked complex between Fd and Fp
- EDC
1-ethyl-3-(dimethylaminopropyl) carbodiimide
- Tris
tris-hydroxymethylaminomethane
- MOPS
3-(N-morpholino)propane sulfonic acid
- DCIP
2,6-dichloropenolindophenol 相似文献
15.
Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex 总被引:1,自引:0,他引:1
Rapid reaction studies presented herein show that ferredoxin:NADP+ oxidoreductase (FNR, EC 1.18.1.2) catalyzes electron transfer from spinach ferredoxin (Fd) to NADP+ via a ternary complex, Fd X FNR X NADP+. In the absence of NADP+, reduction of ferredoxin:NADP+ reductase by Fd was much slower than the catalytic rate: 37-80 s-1 versus at least 445 e-s-1; dissociation of oxidized spinach ferredoxin (Fdox) from one-electron reduced ferredoxin:NADP+ reductase (FNRsq) limited the reduction of FNR. This confirms the steady-state kinetic analysis of Masaki et al. (Masaki, R., Yoshikaya, S., and Matsubara, H. (1982) Biochim. Biophys. Acta 700, 101-109). Occupation of the NADP+ binding site of FNR by NADP+ or by 2',5'-ADP (a nonreducible NADP+ analogue) greatly increased the rate of electron transfer from Fd to FNR, releiving inhibition by Fdox. NADP+ (and 2',5'-ADP) probably facilitate the dissociation of Fdox; equilibrium studies have shown that nucleotide binding decreases the association of Fd with FNR (Batie, C. J. (1983) Ph.D. dissertation, Duke University; Batie, C. J., and Kamin, H. (1982) in Flavins and Flavoproteins VII (Massey, V., and Williams, C. H., Jr., eds) pp. 679-683, Elsevier, New York; Batie, C.J., and Kamin, H. (1982) Fed. Proc. 41, 888; and Batie, C.J., and Kamin, H. (1984) J. Biol. Chem. 259, 8832-8839). Premixing Fd with FNR was found to inhibit the reaction of the flavoprotein with NADP+ and with NADPH; thus, substrate binding may be ordered, NADP+ first, then Fd. FNRred and NADP+ very rapidly formed an FNRred X NADP+ complex with flavin to nicotinamide charge transfer bands. The Fdred X NADP+ complex then relaxed to an equilibrium species; the spectrum indicated a predominance of FNRox X NADPH charge-transfer complex. However, charge-transfer species were not observed during turnover; thus, their participation in catalysis of electron transfer from Fd to NADP+ remains uncertain. The catalytic rate of Fd to NADP+ electron transfer, as well as the rates of electron transfer from Fd to FNR, and from FNR to NADP+ were decreased when the reactants were in D2O; diaphorase activity was unaffected by solvent. On the basis of the data presented, a scheme for the catalytic mechanism of catalysis by FNR is presented. 相似文献
16.
Layer G Ollagnier-de Choudens S Sanakis Y Fontecave M 《The Journal of biological chemistry》2006,281(24):16256-16263
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use L-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe(3+) and a weak binding of Fe(2+) by CyaY. Biochemical analysis showed that the CyaY-Fe(3+) protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed. 相似文献
17.
Touraine B Boutin JP Marion-Poll A Briat JF Peltier G Lobréaux S 《The Plant journal : for cell and molecular biology》2004,40(1):101-111
Nfu proteins are candidates to act as scaffold protein in vivo for iron-sulphur cluster biogenesis. In this work, Nfu2 protein function in the chloroplast was investigated in vivo using T-DNA insertion lines disrupted in AtNfu2 gene. Both alleles characterized presented the same dwarf phenotype due to photosynthetic and metabolic limitations. Nfu2 cDNA expression in nfu2.1 mutant rescued this phenotype. Photosynthesis study of these mutants revealed an altered photosystem I (PSI) activity together with a decrease in PSI amount confirmed by immunodetection experiments, and leading to an over reduction of the plastoquinol pool. Decrease of plastid 4Fe-4S sulphite reductase activity correlates with PSI amount decrease and supports an alteration of 4Fe-4S cluster biogenesis in nfu2 chloroplasts. The decrease of electron flow from the PSI is combined with a decrease in ferredoxin amount in nfu2 mutants. Our results are therefore in favour of a requirement of Nfu2 protein for 4Fe-4S and 2Fe-2S ferredoxin cluster assembly, conferring to this protein an important function for plant growth and photosynthesis as demonstrated by nfu2 mutant phenotype. As glutamate synthase and Rieske Fe-S proteins are not affected in nfu2 mutants, these data indicate that different pathways are involved in Fe-S biogenesis in Arabidopsis chloroplasts. 相似文献
18.
Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin 总被引:9,自引:0,他引:9
R C Conover A T Kowal W G Fu J B Park S Aono M W Adams M K Johnson 《The Journal of biological chemistry》1990,265(15):8533-8541
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo. 相似文献
19.
Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster 总被引:5,自引:0,他引:5
Aquaporin 5 (Aqp5), a member of the aquaporin family of membrane water channels, is thought to modulate the osmolality of fluids in the eye,
lung, and salivary gland. Here, we report the cloning and genomic characterization of murine Aqp5 and its expression in relevant mouse tissues. This gene, comprised of four exons encoding 265 amino acids (121, 55, 28, and
61 amino acids respectively), is transcribed into an approximate 1.8-kb mRNA detected in lung, parotid, submandibular, sublingual,
and lacrimal tissues. Aqp5 encodes a protein that is 98% identical to rat Aqp5. An Aqp5 antibody detects an approximately 27-kDa protein band in mouse lung, and an additional 29 kDa band in salivary gland. Cloning
and physical mapping genomic fragments contiguous with Aqp5 revealed two other members of the aquaporin family: Aqp2 and Aqp6, arrayed head to tail in the order Aqp2–Aqp5–Aqp6, and provides evidence of a gene cluster conserved in order and orientation in both mice and humans. 相似文献
20.
Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins 总被引:19,自引:4,他引:15 下载免费PDF全文
《The Journal of cell biology》1996,134(3):589-601
Macromolecular trafficking across the nuclear envelope involves interactions between cytosolic transport factors and nuclear pore complex proteins. The p62 complex, an assembly of 62, 58, 54, and 45-kD O-linked glycoproteins-localized near the central gated channel of the nuclear pore complex, has been directly implicated in nuclear protein import. The cDNA cloning of rat p62 was reported previously. We have now carried out cDNA cloning of rat p58, p54, and p45. We found that p58 contains regions with FG (Phe, Gly) and PA (Pro, Ala) repeats at both its NH2 and COOH termini separated by a predicted alpha-helical coiled-coil region, while p54 has an NH2-terminal FG and PA repeat region and a COOH-terminal predicted coiled-coil region. p45 and p58 appear to be generated by alternative splicing, with p45 containing the NH2-terminal FG repeat region and the coiled-coil region of p58. Using immunogold electron microscopy, we found that p58/p45 and p54 are localized on both sides of the nuclear pore complex, like p62. Previous studies have shown that immobilized recombinant p62 can bind the cytosolic nuclear import factor NTF2 and thereby deplete transport activity from cytosol. We have now found that immobilized recombinant p58 and p54 also can deplete nuclear transport activity from cytosol, and that p62, p58, and p54 bind directly to the cytosolic nuclear import factors p97 and NTF2. At least in the case of p58, this involves FG repeat regions. Moreover, p58 can bind to a complex containing transport ligand, the nuclear localization sequence receptor (Srp1 alpha) and p97. These data support a model in which the p62 complex binds to a multicomponent particle consisting of transport ligand and cytosolic factors to achieve accumulation of ligand near the central gated channel of the nuclear pore complex. 相似文献