首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
棉花根和下胚轴质膜脂肪酸主要由棕榈酸、硬脂酸、亚油酸和亚麻酸组成。干旱胁迫后,PM脂肪酸饱和度增加,不饱和脂肪到和不饱和指数降低。其中棕榈酸含量上升和亚麻酸含量下降较大,膜透性增高。质膜H^+ATPase和Ca^2-ATPase活力降低,脂氧合酶活性增强。  相似文献   

2.
为了了解牧草低温保护物质与其抗冷冻的关系,在高寒山区测定了几种多年生牧草根中低温保护物质的含量和几种蔗糖酶活力的变化。结果表明,在4月土壤解冻期间,无芒雀麦、花雀麦、垂穗披碱草和草地早熟禾根中的蔗糖含量分别下降了74.1%、66.2%、45.2%和69.6%,果糖含量分别下降了72.0%、38.0%、68.3%和84.6%,葡萄糖含量分别下降了66.7%、62.5%、42.2%和65.2%,脯氨酸含量分别下降了83.0%、51.0%、43.3%和70.6%,可溶性蛋白质变化不大;蔗糖合成酶、蔗糖磷酸合成酶活性下降,蔗糖分解酶活性增加,蔗糖分解酶活性是蔗糖合成酶活性的22~35倍,是蔗糖磷酸合成酶活性的55~80倍。研究结果说明,春季牧草萌发时,根中已糖含量的下降是蔗糖分解酶活性增加的结果,根中脯氨酸作为氮的贮藏物质被用于根的呼吸和蛋白质合成。春季牧草根的抗寒能力随着根中低温保护物质的减少而下降,这也说明牧草的低温保护物质和牧草的抗寒性密切相关。  相似文献   

3.
棉花根和下胚轴质膜(PM)脂肪酸主要由棕榈酸(16:0)、硬脂酸(18:0)、亚油酸(18:2)和亚麻酸(18:3)组成。干旱胁迫后,PM脂肪酸论和度增加,不饱和脂肪酸和不饱和指数(IUFA)降低。其中棕榈酸含量上升和亚麻酸含量下降较大,膜透性增高,质膜H -ATPase和Ca2 -ATPase活力降低,脂氧合酶(LOX)活性增强。  相似文献   

4.
5.
温带地区的高山多年生草本植物可在-30℃组织结冰状况下生存,然而人们并不了解其抗冻的生理机理。本研究目的拟通过测定自然生境下生长的4种高寒山区禾本科牧草(无芒雀麦(Bromus inermis Leyss.)、花雀麦(Bromus  sinensis  Keng.)、垂穗披碱草(Elymus nutans Griseb.)、草地早熟禾(Poa sphyondylodes  Trin.)根中渗透调节物、膜脂过氧化产物、多胺含量季节变化,以了解他们与牧草抗冻的关系。结果表明,在晚秋(9月1~15日)牧草根中MDA含量增高,尔后下降,冬季保持恒定。总碳水化合物(TNC),可溶性糖、脯氨酸、可溶性蛋白质含量随晚秋气温下降而增加,在11月达到最高,尔后下降,且持续到翌年春季。随晚秋气温下降从9月到11月根中多胺含量迅速增加,4种牧草平均增加180%,其中亚精胺(Spd)占多胺含量的53%。在11月牧草根中多胺几乎完全消失。上述物质在晚秋入冬增加正好与牧草抗冻锻炼时间相吻合,因而是植物抗冻适应的重要生理响应和植物越冬的低温保护物质。他们在降低细胞冰点、防止细胞结冰引起的膜机械伤害,抑制膜脂过氧化保护膜稳定性方面具有重要作用。  相似文献   

6.
在高寒山区(海拔2900m)和选取4种多年生草本植物,即无芒雀麦(Bromus inermis)、草地早熟禾(Poa sphyondylodes)、花誉麦(Bromus sinensis)和垂重申披碱草(Elymus nutans),测定了秋末、冬初、冬季、春季气温变化过程中其根中丙二醛(MDA)含量和抗氧酶活力(过氧化氢酶(CAT)、过氧化物酶(POD)、超氧物歧化酶(SOD))和抗坏血酸氧化酶(APX)变化,分析了抗氧酶系统在根抗冷适应中的作用,结果表明,随秋末降温植物根中MDA含量增加,尔后下降,在冬季和翌年春季保持相对稳定。从9月初到10月下旬,4种植物根中SOD、CAT、POD活力平均增加170%、130%和56%。在冬季下降,但仍远高于9月,在春季气温上升过程中酶活力上升。根能在组织结冰状况下生存与其具备完善的保护酶系统,能及时清除氧自由基抑制膜脂过氧化维持膜完整性有关,据降温过程中MDA含量和抗氧酶活力变化,可将根冷适应分为两个阶段,即第1阶段平均气温在0℃以上,抗氧酶活力增强,MDA增加阶段,第2阶段平均气温降至0℃以下,最低气温降到-15℃以下,抗氧酶活力下降,MDA无明显变化阶段。  相似文献   

7.
温带地区的高山多年生草本植物可在-30℃组织结冰状况下生存,然而人们并不了解其抗冻的生理机理,本研究目的通过测定自然生境下生长的4种高寒山区禾本科牧草(无芒雀麦(Bromus inermis Leyss.)、花雀麦(Bromus sinensis Keng.)、垂穗披破草(Elymus mutans Griseb.)、草地早熟禾(Poa sphyondylodes Trin.)根中渗透调节物、膜脂  相似文献   

8.
吴卫东  何玉秀 《生命科学》2021,(11):1392-1399
心肌脂肪酸代谢和葡萄糖代谢是既相互合作又相互竞争的动态平衡关系,一旦被打破可导致心肌代谢紊乱.长期规律性运动可改善心肌脂肪酸代谢,达到良好的运动适应,但心肌脂肪酸代谢对一次运动的反应和对长期运动的适应并不相同.心肌脂肪酸代谢对运动的反应与适应机制可从脂肪酸摄取、氧化分解、脂质合成积累、线粒体功能和糖酵解等五方面分析.该...  相似文献   

9.
研究了高寒山区几种草本植物在低温生长过程中植物叶中抗氧化酶、抗氧化物和膜脂过氧化产物的变化及其作用。结果表明,耐寒性差、生长期短的一年生植物微孔草MDA含量较低,保护酶活力也较低。耐寒性强、生长期长的苜蓿、垂穗披碱草、草地早熟禾、无芒雀4种多年生植物MDA含量较高,保护酶活力和抗氧化物含量也较高。其生长季平均MDA含量分别比微孔草高2.27倍、1.64倍、2.07倍和1.55倍,超氧化物歧化酶(SOD)活力分别比微孔草高16.7%、27.1%、46.2%和11.5%;地氧化氢酶(CAT)分别高51.5%、123.0%、25.3%和9.4%,类胡萝卜麦含量分别高126.5%、142.7%、138.4%和394.4%。当气温低于0℃后,微孔草死亡,完成生活史,以种子越冬,在生理上无明显抗冻特征。而此时多年生植物SOD活力趋于增强,仍能一定生长,至-5℃~10℃低温时地上部才枯死,其细胞具有较强的耐膜脂过氧化能力和抗氧化酶系统,对环境的快速反应可能是其在高寒山区低温生长的重要生理机理。  相似文献   

10.
周瑞莲  张普金 《生态学报》1996,16(4):402-407
本文研究了高寒草地3种立地条件下垂穗披碱草在春季萌动过程中根系碳水化合物和保护酶活性的变化。  相似文献   

11.
Growth of a choline requiring auxotroph of Neurospora crassa on medium lacking exogenous choline produces large changes in the levels of phosphatidylethanolamine and phosphatidylcholine. Whole cell fatty acid distributions were found to vary widely between different phospholipid species of normally growing, choline-supplemented cultures with phosphatidylcholine showing the highest levels of unsaturation and anionic phospholipids and cardiolipin having the lowest. In these lipids, choline deprivation produced little change in fatty acid profiles of phosphatidylethanolamine, whereas changes in fatty acids of phosphatidylcholine and acidic phospholipids resulted in increased levels of unsaturation at both growth temperatures. Microsomal phospholipids also showed fatty acid variability with sharp decreases in phosphatidylcholine unsaturates and increases in acidic phospholipid unsaturated fatty acids at low growth temperatures. Fluorescence polarization of 1,6-diphenylhexatriene in vesicles formed from total cellular and microsomal lipids showed that choline deprivation produces changes in thermotropic properties in the lipids in deprived cultures at either growth temperature. The effective differences in fluorescence polarization between choline-deprived and supplemented cultures grown at a given temperature were found to be comparable to those produced by temperature acclimation in normally growing cultures over a temperature range of 22 K.  相似文献   

12.
Acute cooling significantly increases energy demand in non-hibernators for the defence of core temperature but the contribution of the liver to thermogenesis is poorly understood. A two-tracer method to estimate lipid metabolism in cold-naïve control (CON) and cold-acclimated (CA) rats was employed to quantify hepatic rates of fat metabolism. Both fenofibrate, to increase liver mass and fat oxidation and dichloroacetate (DCA) to inhibit fat oxidation were used to alter lipid metabolism in CON animals. Following acute cooling, CA led to a doubling of the time to reach a core temperature 25 °C (P < 0.001), whereas DCA treatment decreased time of cooling (P < 0.01). DCA-treatment increased the gradient of Arrhenius-transformed rate–pressure product (P < 0.01). CA increased both palmitate uptake (P < 0.001) and β-oxidation (P < 0.01) whilst DCA treatment decreased uptake (P < 0.01) and β-oxidation (P < 0.05). Tissue-specific estimates of metabolism revealed that CA led to a 12-fold increase in β-oxidation for brown adipose tissue (P < 0.001) whilst fenofibrate halved β-oxidation in the liver (P < 0.01) despite doubling the liver mass (P < 0.001) and DCA decreased hepatic β-oxidation to 15% of control levels. Taken together, these results suggest that the liver has minimal contribution to thermogenesis in the rat, with brown adipose tissue significantly increasing both fat uptake and oxidation in response to CA.  相似文献   

13.
脂肪酸对人肺腺癌细胞膜流动性的影响   总被引:2,自引:0,他引:2  
田长富  刘理 《生物技术》1995,5(5):22-23,21
脂肪酸是细胞膜正常流动性的主要调节因素之一。本文报导了二种不同转移表型人肺腺细胞与九种不同脂肪酸共孵育后,对其细胞膜流动性的影响。结果表明,不同转移一夫肺腺癌细胞对各种脂肪酸有不同的敏感性,高转移癌细胞Anip对棕榈酸和花生酸较敏感,而低转移癌细胞AGZY对棕榈烯酸和亚油酸较敏感。  相似文献   

14.
    
The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites.  相似文献   

15.
    
The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites.  相似文献   

16.
    
Colonies of Sordaria brevicollis cut with a razor blade were examined and compared to undamaged control colonies using light and transmission electron microscopy. Cut hyphae lost cytoplasm from severed compartments but retained cytoplasm in adjacent compartments due to the plugging of septal pores by nuclei. Hexagonal crystals were observed in hyphae but were neither positioned near to septal pores nor observed plugging them. Approximately 36% of setpal pores in undamaged hyphae were found to contain a nucleus, presumably migrating through them. It is suggested that nuclei plug septal pores in severed hyphae of S. brevicollis because they are more conveniently positioned to do so than the distant hexagonal crystals.  相似文献   

17.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.  相似文献   

18.
嗜冷菌及耐冷菌是冷适应酶及生物活性物质的重要资源。本研究从内陆土壤筛得33株冷适应细菌,包括6株革兰氏阳性菌与27株革兰氏阴性菌。通过细胞膜脂肪酸分析表明,革兰氏阳性菌的膜脂肪酸主要为分支脂肪酸,推测分支结构是阳性菌膜脂的主要适冷机制。革兰氏阴性菌呈现了不饱和、分支、短链等多样的膜脂适冷调节方式。根据脂肪酸组分的多样性,选择并鉴定了17株嗜冷及耐冷菌分布在11个属中,细胞膜脂肪酸组成的变化规律与细菌16SrRNA的进化分布高度一致。研究还表明同为不饱和脂肪酸为主的革兰氏阴性菌呈现了不同的适冷机理。相关研究不仅阐述了冷适应细菌的细胞膜脂肪酸的适应机制,而且为相关适冷酶源的开发利用提供了宝贵的资源。  相似文献   

19.
    
Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields.  相似文献   

20.
A previous study showed chemical and physical impairment of the erythrocyte membrane of overweight and moderately obese women. The present study investigated the effects of a low-calorie diet (800 kcal/day deficit for 8 weeks) on erythrocyte membrane properties in 70 overweight and moderately obese (body mass index, 25-33 kg/m2) normotensive, nondiabetic women. At the end of dietary intervention, 24.3% of women dropped out, 45.7% lost less than 5% of their initial weight (Group I) and only 30% of patients lost at least 5% of their initial body weight (Group II). Group I showed no significant changes in erythrocyte membrane composition and function. The erythrocyte membranes of Group II showed significant reductions in malondialdehyde, lipofuscin, cholesterol, sphingomyelin, palmitic acid and nervonic acid and an increase in di-homo-γ-linolenic acid, arachidonic acid and membrane fluidity. Moreover, Group II showed an improvement in total cholesterol, low-density lipoprotein cholesterol, glycemia and insulin resistance. These changes in erythrocyte membrane composition could reflect a virtuous cycle resulting from the reduction in insulin resistance associated with increased membrane fluidity that, in turn, results in a sequence of metabolic events that concur to further improve membrane fluidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号