首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Apomorphies that have been proposed for the Psocodea, Psocoptera, Phthiraptera and superfamilial groups within the Phthiraptera are enumerated and evaluated. The Psocodea and Phthiraptera are considered to be holophyletic, but the sister-group of the Phthiraptera lies within the Psocoptera. Within the Phthiraptera the Anoplura and Rhyncophthirina form a holophyletic group whose sister-group is the Ischnocera, and the Amblycera is the sister-group of this assemblage. The common ancestor of the Phthiraptera is suggested to have been parasitic, and all lice are believed to have evolved under environmental constraints similar to those operating today. On the evidence provided by host relationships the origin of the lice is dated as the Cretaceous, but the host of the ancestor of the order is not identified. The lice of marsupials in South America and Australia are not considered to comprise a holophyletic group.  相似文献   

2.
The occurrence of active water-vapour uptake was examined in 16 Phthirapteran species representing the two groups of biting lice or Mallophaga (Amblycera and Ischnocera) and the sucking lice or Anoplura. Water-vapour uptake could not be demonstrated in the Anoplura and although it is frequently encountered in the biting lice, some members of both the Ischnocera and Amblycera lack the faculty. Uptake performance in the absorbing species of biting lice is exceptionally efficient showing higher rates and lower thresholds than other absorbing arthropods. The critical equilibrium humidities were found to range between 43 and 52% r.h., 43% being the lowest value so far reported. The uptake rates, expressed as a percentage of total body water mass, by far surpass those of all other arthropods investigated. The Phthirapteran uptake pattern closely resembles that of the Psocoptera, showing abrupt initiation and termination of the uptake process, limitation of continuous absorption to relatively short periods of time and constancy of the absorption rate over the entire period of continuous uptake. Studies on the uptake site and mechanism in Phthiraptera revealed an oral-uptake system which is congruous with that of the Psocoptera. The structural components of the uptake device, like a pair of oval lingual sclerites, representing the site of water-vapour condensation and a cibarial sucking pump which is connected by a paired or branching selerotized tubule to the lingual selerites and is responsible for the transfer of the condensed water to the gut, are unique acquisitions of the Psocodea.In those members of the biting lice which have lost the faculty of water-vapour uptake the structural components of the uptake system are modified or reduced.  相似文献   

3.
Acercaria display an unusually broad array of adhesive devices occurring on different parts of the legs. Attachment structures of all major subgroups are described and illustrated. Nineteen characters of the distal leg region were combined with a data matrix containing 99 additional morphological characters of different body parts. The results of the cladistic analysis are largely congruent with current hypotheses. Zoraptera are not retrieved as close relatives of Acercaria. The monophyly of the entire lineage and of the major subgroups Psocodea, Phthiraptera, and Hemiptera is confirmed. Our data also support the monophyly of Auchenorrhycha and a sister‐group relationship between Thysanoptera and Hemiptera (Condylognatha). In contrast to other lineages of insects, the hairy type of adhesive device is present only in one group within the Acercaria (Heteroptera, Cimicomorpha). The arolium is present in the groundplan but missing in several groups (e.g. Psocodea, Cicadoidea, Aphidoidea). Pretarsal pulvilli evolved several times independently. Tarsal euplantulae and different specialized clasping devices have evolved within Phthiraptera, whereas pretarsal attachment devices are missing in this ectoparasitic group. The potential to modify pretarsal attachment devices in their structural details has probably contributed to the very successful diversification of the predominantly phytophagous Hemiptera.  相似文献   

4.
Phthiraptera (chewing and sucking lice) and Psocoptera (booklice and barklice) are closely related to each other and compose the monophyletic taxon Psocodea. However, there are two hypotheses regarding their phylogenetic relationship: (1) monophyletic Psocoptera is the sister group of Phthiraptera or (2) Psocoptera is paraphyletic, and Liposcelididae of Psocoptera is the sister group of Phthiraptera. Each hypothesis is supported morphologically and/or embryologically, and this problem has not yet been resolved. In the present study, the phylogenetic position of Phthiraptera was examined using mitochondrial 12S and 16S rDNA sequences, with three methods of phylogenetic analysis. Results of all analyses strongly supported the close relationship between Phthiraptera and Liposcelididae. Results of the present analyses also provided some insight into the elevated rate of evolution in mitochondrial DNA (mtDNA) in Phthiraptera. An elevated substitution rate of mtDNA appears to originate in the common ancestor of Phthiraptera and Liposcelididae, and directly corresponds to an increased G+C content. Therefore, the elevated substitution rate of mtDNA in Phthiraptera and Liposcelididae appears to be directional. A high diversity of 12S rDNA secondary structure was also observed in wide range of Phthiraptera and Liposcelididae, but these structures seem to have evolved independently in different clades.  相似文献   

5.
A major fraction of the diversity of insects is parasitic, as herbivores, parasitoids or vertebrate ectopara sites. Understanding this diversity requires information on the origin of parasitism in various insect groups. Parasitic lice (Phthiraptera) are the only major group of insects in which all members are permanent parasites of birds or mammals. Lice are classified into a single order but are thought to be closely related to, or derived from, book lice and bark lice (Psocoptera). Here, we use sequences of the nuclear 18S rDNA gene to investigate the relationships among Phthiraptera and Psocoptera and to identify the origins of parasitism in this group (termed Psocodea). Maximum-likelihood (ML), Bayesian ML and parsimony analyses of these data indicate that lice are embedded within the psocopteran infraorder Nanopsocetae, making the order Psocoptera paraphyletic (i.e. does not contain all descendants of a single common ancestor). Furthermore, one family of Psocoptera, Liposcelididae, is identified as the sister taxon to the louse suborder Amblycera, making parasitic lice (Phthiraptera) a polyphyletic order (i.e. descended from two separate ancestors). We infer from these results that parasitism of vertebrates arose twice independently within Psocodea, once in the common ancestor of Amblycera and once in the common ancestor of all other parasitic lice.  相似文献   

6.
The Middle Jurassic Archipsylla sinica sp. n. is the first record of the enigmatic Mesozoic family Archipsyllidae from China. This well-preserved Chinese material bears several apomorphies allowing an attribution of this family to the Psocodea. The presence of four-segmented tarsi in Archipsyllidae suggests that the reduction in number of tarsomeres occurred independently at least two times in the modern paraneopteran lineages Psocodea (“Psocoptera” + Phthiraptera) and Condylognatha (Thysanoptera + Hemiptera).  相似文献   

7.
A brief historical overview is given of the most relevant taxonomic studies of insect groups vectors of transmissible diseases in Brazil, from the "heroic" times of the foundation of the Instituto Oswaldo Cruz in Rio de Janeiro up to the present. The following orders are considered: Phthiraptera (Anoplura, Amblycera and Ischnocera), Hemiptera (Reduviidae: Triatominae), Siphonaptera and Diptera (Culicidae, Ceratopogonidae, Psychodidae: Phlebotominae, Simuliidae, Tabanidae, Chloropidae and Muscidae). The most important Brazilian collections of each group are cited.  相似文献   

8.
The presence of two species of Phthiraptera, Bovicola caprae (Gurlt, 1843) (Ischnocera: Bovicoliidae) and Solenopotes binipilosus (Fahrenholz, 1916) (Anoplura: Linognathidae), is reported for the first time from Pudu puda (Molina, 1782).  相似文献   

9.
啮总目包括啮虫目(皮虱和书虱)和虱目(羽虱和吸虱),是农业和医学等领域具有重要经济意义和研究价值的类群,目前已鉴定和描述的物种超过10 000个。啮总目昆虫线粒体基因组的变异性在昆虫各类群中最为剧烈,这些变异包括基因组的结构、基因排序、基因含量和链上分布等诸多方面。本文全面分析和总结了啮总目昆虫裂化线粒体基因组的进化属性,并结合两侧对称动物线粒体基因组的裂化特征重构了线粒体基因组环裂化的过程。引入“线粒体基因组核型”的概念来描述动物线粒体基因组丰富的变异程度。动物线粒体的染色体有减小的趋势,而线粒体基因组的裂化正是体现这种趋势的一种重要策略。同时,总结和探讨了目前具有争议的啮总目主要类群间的系统发育关系。本综述为啮总目昆虫线粒体基因组学、啮总目系统发生关系以及两侧对称动物线粒体基因组进化模式的研究提供一个新的视角。  相似文献   

10.
The male and female of Haemodipsis brachylagi n. sp. (Phthiraptera: Anoplura) are described from specimens collected from a pygmy rabbit, Brachylagus idahoensis (Merriam) (Lagomorpha: Leporidae), from Nevada. Morphological features that differentiate the new species from other known species of Haemodipsus are elucidated, and an identification key to both sexes of the 3 species now known from this genus in North America is included. Geographical distributions of the other 4 species of Haemodipsus known from other parts of the world are highlighted.  相似文献   

11.
Wei DD  Shao R  Yuan ML  Dou W  Barker SC  Wang JJ 《PloS one》2012,7(3):e33973
Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic.  相似文献   

12.
There has been much argument about the phylogenetic relationships of the four suborders of lice (Insecta: Phthiraptera). Lyal's study of the morphology of lice indicated that chewing/biting lice (Mallophaga) are paraphyletic with respect to sucking lice (Anoplura). To test this hypothesis we inferred the phylogeny of 33 species of lice from small subunit (SSU) rRNA sequences (18S rRNA). Liposcelis sp. from the Liposcelididae (Psocoptera) was used for outgroup reference. Phylogenetic relationships among the four suborders of lice inferred from these sequences were the same as those inferred from morphology. The Amblycera is apparently the sister-group to all other lice whereas the Rhynchophthirina is apparently sister to the Anoplura; these two suborders are sister to the Ischnocera, i.e. (Amblycera (Ischnocera (Anoplura, Rhynchophthirina))). Thus, the Mallophaga (Amblycera, Ischnocera, Rhynchophthirina) is apparently paraphyletic with respect to the Anoplura. Our analyses also provide evidence that: (i) each of the three suborders of lice that are well represented in our study (the Amblycera, Ischnocera, and Anoplura) are monophyletic; (ii) the Boopiidae is monophyletic; (iii) the genera Heterodoxus and Latumcephalum (Boopiidae) are more closely related to one another than either is to the genus Boopia (also Boopiidae); (iv) the Ricinidae and Laemobothridae may be sister-taxa; (v) the Philopteridae may be paraphyletic with respect to the Trichodectidae; (vi) the genera Pediculus and Pthirus are more closely related to each other than either is to the genus Pedicinus ; and (vii) in contrast to published data for mitochondrial genes, the rates of nucleotide substitution in the SSU rRNA of lice are not higher than those of other insects, nor do substitution rates in the suborders differ substantially from one another.  相似文献   

13.

Background  

Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships.  相似文献   

14.
Preening is the principle behavioral defense used by birds to combat ectoparasites. Most birds have a small overhang at the tip of their bills that is used to shear through the tough cuticle of ectoparasitic arthropods, making preening much more efficient. Birds may also scratch with their feet to defend against ectoparasites. This is particularly important for removing ectoparasites on the head, which birds cannot preen. Scratching may be enhanced by the comb-like serrations that are found on the claws of birds in many avian families. We examined the prevalence and intensity of ectoparasites of barn owls (Tyto alba pratincola) in southern Idaho in relation to bill hook length and morphological characteristics of the pectinate claw. The barn owls in our study were infested with 3 species of lice (Phthiraptera: Ischnocera): Colpocephalum turbinatum , Kurodaia subpachygaster, and Strigiphilus aitkeni . Bill hook length was associated with the prevalence of these lice. Owls with longer hooks were more likely to be infested with lice. Conventional wisdom suggests that the bill morphology of raptors has been shaped by selection for efficient foraging; our data suggest that hook morphology may also play a role in ectoparasite defense. The number of teeth on the pectinate claw was also associated with the prevalence of lice. Owls that had claws with more teeth were less likely to be infested with lice, which suggests that larger pectinate claws may offer relatively more protection against ectoparasitic lice. Experiments that manipulate the bill hook and pectinate claw are needed to confirm whether these host characters are involved in ectoparasite defense. Finally, we recovered mammalian ectoparasites from 4 barn owls. We recovered species of mammalian lice (Phthiraptera:Anoplura) and fleas (Siphonaptera) that are commonly found on microtine rodents. The owls probably acquired these parasites from recently eaten prey. This represents 1 of the few documented cases of parasites "straggling" from prey to predator.  相似文献   

15.
The prevalence of infestation with head lice and body lice, Pediculus spp. (Phthiraptera: Pediculidae) and pubic (crab) lice Pthirus pubis (L.) (Phthiraptera: Pthiridae), was recorded from 484 people in Nepal. The prevalence of head lice varied from 16% in a sample of people aged 10-39 years of age, to 59% in street children. Simultaneous infestations with head and body lice (double infestations) varied from 18% in slum children to 59% in street children.  相似文献   

16.
Many four‐winged insects have mechanisms that unite the forewings and hindwings in a single plane. Such an in‐flight wing coupling apparatus may improve flight performance in four‐winged insects, but its structure is variable among different insect groups. The wings of bark lice (Insecta: Psocodea: “Psocoptera”) also have an in‐flight wing coupling apparatus, but to date, its morphology has not been studied in detail. In this study, we examined the wing‐coupling structure in representative species of the three suborders of bark lice (Trogiomorpha, Troctomorpha, and Psocomorpha) and inferred its origin and transformation. We conclude that the main component of the psocodean wing coupling apparatus evolved once in the common ancestor via modification of cuticular structures at the apex of the forewing CuP vein. Morphological differences in components of the coupling structures are phylogenetically informative at the intraorder level and include an autapomorphy that characterizes Troctomorpha and a synapomorphy that supports a sister relationship between Troctomorpha and Psocomorpha.  相似文献   

17.
18.
Sucking lice and ticks were collected from live-trapped eastern rufous mouse lemurs, Microcebus rufus Geoffroy, in and around the periphery of Ranomafana National Park, southeastern Madagascar, from 2007 to 2009. Samples of 53 sucking lice (Insecta: Phthiraptera: Anoplura) and 28 hard ticks (Acari: Ixodidae) were collected from 36 lemur captures representing 26 different host individuals. All of the lice were Lemurpediculus verruculosus (Ward) (6 males, 46 females, 1 third instar nymph). Only the holotype female was known previously for this louse and the host was stated to be a "mouse lemur." Therefore, we describe the male and third instar nymph of L. verruculosus and confirm M. rufus as a host (possibly the only host) of this louse. All of the ticks were nymphs and consisted of 16 Haemaphysalis lemuris Hoogstraal, 11 Haemaphysalis sp., and 1 Ixodes sp. The last 2 ticks listed did not morphologically match any of the Madagascar Haemaphysalis or Ixodes ticks for which nymphal stages have been described.  相似文献   

19.
External and internal head structures of larval representatives of Raphidiidae are described. The obtained data were compared to characters of other neuropterid larvae and to larval characters of representatives of other endopterygote lineages. Characters potentially relevant for phylogenetic reconstruction are listed and discussed. The larvae of Raphidioptera differ distinctly from other neuropterid larvae in their morphology. They are mainly characterised by autapomorphic and plesiomorphic character states and few features indicate systematic affinities with other groups. Endopterygote groundplan features maintained in Raphidioptera are the complete tentorium, the free labrum, the full set of labral muscles, the presence of four extrinsic antennal muscles, the three-segmented labial palpi, the presence of a full set of extrinsic maxillary and labial muscles, the presence of a salivarium, and possibly the high number of stemmata. Apomorphies likely correlated with predaceous habits are the long gula, the protracted maxillae, the longitudinal arrangement of extrinsic maxillary muscles, and the elongated prepharyngeal tube. Highly unusual, potentially autapomorphic features are the presence of a dorsal ligament of the tentorium and paired gland-like structures below the pharynx. A prognathous or very slightly inclined head and slender mandibles without mola are features shared by larvae of all orders of Neuropterida. The parallel-sided head is a potential synapomorphy of Raphidioptera and Megaloptera. A fully prognathous head with anteriorly shifted posterior tentorial grooves and the presence of a parietal ridge and a distinct neck region are features shared with Corydalidae. Characters of the larval head are not sufficient for a reliable placement of Raphidioptera.  相似文献   

20.
We investigated the diversity, cophylogenetic relationships, and biogeography of hoplopleurid sucking lice (Phthiraptera: Anoplura) parasitizing rodents (Muridae: Sigmodontinae) in the Manu National Park and Biosphere Reserve. Our morphological and molecular studies reveal that 15 distinct louse species parasitize 19 rodent species. Three of these louse species are new to science, and all but two of the host associations were previously unknown. We find that hoplopleurid lice in South America parasitize multiple host species across a large geographic area, and that Peru represents a new geographic locality for almost all the louse species collected in the present study. Phylogenetic analyses of mitochondrial and nuclear data reveal that the louse family Hoplopleuridae and the genera Hoplopleura and Pterophthirus are not monophyletic, and lice do not appear to group by host tribe, collecting locality, or collection elevation. The lack of monophyly for these apparently natural groups (taxonomic, locality, and elevation) indicates that host switching with or without parasite speciation may be prevalent among hoplopleurid lice. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 598–610.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号