首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the C-terminal sequence HDEL acts as a retention signal for luminal endoplasmic reticulum (ER) proteins in Saccharomyces cerevisiae, and that it is possible to isolate mutants that fail to retain an invertase fusion protein bearing this signal. Analysis of many such mutants defines two genes, ERD1 and ERD2. Cells lacking the ERD1 gene secrete the endogenous ER protein, BiP. Under normal growth conditions, the rate of secretion is equivalent to the rate at which wild-type cells secrete a modified form of BiP that lacks the HDEL signal altogether. Thus, erd1 cells show a profound disruption of the retention system. The mutant cells have no gross abnormality of their intracellular membrane system, but show defects in the Golgi-dependent modification of glycoproteins. We suggest that sorting of luminal ER proteins normally occurs in the Golgi, and that the function of ERD1 is required for the correct interaction of an HDEL receptor with its ligands. The sequence of ERD1 predicts a membrane protein with several transmembrane domains, a conclusion supported by analysis of ERD1-SUC2 fusion proteins.  相似文献   

2.
M J Lewis  D J Sweet  H R Pelham 《Cell》1990,61(7):1359-1363
Luminal ER proteins carry a signal at their C terminus that prevents their secretion; in S. cerevisiae this signal is the tetrapeptide HDEL. Indirect evidence suggests that HDEL is recognized by a receptor that retrieves ER proteins from the secretory pathway and returns them to the ER, and a candidate for this receptor is the product of the ERD2 gene (see accompanying paper). We show here that presumptive ER proteins from the budding yeast K. lactis can terminate either with HDEL or, in the case of BiP, with DDEL. S. cerevisiae does not efficiently recognize DDEL as a retention signal, but exchange of its ERD2 gene for the corresponding gene from K. lactis allows equal recognition of DDEL and HDEL. Thus the specificity of the retention system is determined by the ERD2 gene. We conclude that ERD2 encodes the receptor that sorts luminal ER proteins.  相似文献   

3.
Glycosylphosphatidylinositol (GPI)-anchored proteins exit the ER in distinct vesicles from other secretory proteins, and this sorting event requires the Rab GTPase Ypt1p, tethering factors Uso1p, and the conserved oligomeric Golgi complex. Here we show that proper sorting depended on the vSNAREs, Bos1p, Bet1p, and Sec22p. However, the t-SNARE Sed5p was not required for protein sorting upon ER exit. Moreover, the sorting defect observed in vitro with bos1-1 extracts was also observed in vivo and was visualized by EM. Finally, transport and maturation of the GPI-anchored protein Gas1p was specifically affected in a bos1-1 mutant at semirestrictive temperature. Therefore, we propose that v-SNAREs are part of the cargo protein sorting machinery upon exit from the ER and that a correct sorting process is necessary for proper maturation of GPI-anchored proteins.  相似文献   

4.
Intracisternal granules (ICG) develop in the rough ER of hyperstimulated thyrotrophs or thyroid hormone-secreting cells of the anterior pituitary gland. To determine the fate of these granules, we carried out morphological and immunocytochemical studies on pituitaries of thyroxine-treated, thyroidectomized rats. Under these conditions the ER of thyrotrophs is dramatically dilated and contains abundant ICG; the latter contain beta subunits of thyrotrophic hormone (TSH-beta). Based on purely morphologic criteria, intermediates were identified that appeared to represent stages in the transformation of a part rough/part smooth ER cisterna into a lysosome. Using immunocytochemical and cytochemical markers, two major types of intermediates were distinguished: type 1 lacked ribosomes but were labeled with antibodies against both ER markers (PDI, KDEL, ER membrane proteins) and a lysosomal membrane marker, lgp120. They also were reactive for the lysosomal enzyme, acid phosphatase, by enzyme cytochemistry. Type 2 intermediates were weakly reactive for ER markers and contained both lgp120 and lysosomal enzymes (cathepsin D, acid phosphatase). Taken together these results suggest that in hyperstimulated thyrotrophs part rough/part smooth ER elements containing ICG lose their ribosomes, their membrane is modified, and they sequentially acquire a lysosome-type membrane and lysosomal enzymes. The findings are compatible with the conclusion that a pathway exists by which under certain conditions, secretory proteins present in the ER as well as ER membrane and content proteins can be degraded by direct conversion of ER cisternae into lysosomes.  相似文献   

5.
Protein myristoylation was investigated in the yeast secretory pathway. Conditional secretory mutations were used to accumulate inteRmediaries in the pathway between the endoplasmic reticulum and Golgi (sec 18, 20), within the Golgi (sec 7), and between the Golgi and plasma membrane (sec 1, 3, 4, 5, 6, 8, 9). The accumulation of vesicles was paralleled by the enrichment of a defined subset of proteins modified either via ester or amide linkages to myristic acid: Myristoylated proteins of 21, 32, 49, 56, 75, and 136 kDa were enriched between the endoplasmic reticulum and Golgi; proteins of 21, 32, 45, 56, 75, 136 kDa were enriched by blocks within the Golgi; and proteins of 18, 21, 32, 36, 49, 68, and 136 kDa were trapped in a myristoylated form by blocks between the Golgi and plasma membrane. This enrichment of myristoylated proteins was reversed upon returning the cells to the permissive temperature for secretion. The fatty acid was linked to the 21-kDa protein via a hydroxylamine-resistant amide linkage (N-myristoylation) and to the proteins of 24, 32, 49, 56, 68, 136 kDa via hydroxylamine-labile ester linkage (E-myristoylation). In addition, myristoylated proteins of 21, 56, and 136 kDa were glycosylated via amino linkages to asparagine. This suggests they are exposed to the lumen of the secretory pathway. Three proteins (24, 32, and 56) were E-myristoylated in the presence of protein synthesis inhibitors, indicating this modification can occur posttranslationally. After using cycloheximide to clear protein passengers from the secretory pathway the 21-, 32-, and 56-kDa proteins continued to accumulate in a myristoylated form when vesicular transport was blocked between the Golgi and plasma membrane. These data suggest that myristoylation occurs on a component of the secretory machinery rather than on a passenger protein.  相似文献   

6.
We have obtained and characterized a genomic clone of SEC14, a Saccharomyces cerevisiae gene whose product is required for export of yeast secretory proteins from the Golgi complex. Gene disruption experiments indicated that SEC14 is an essential gene for yeast vegetative growth. Nucleotide sequence analysis revealed the presence of an intron within the SEC14 structural gene, and predicted the synthesis of a hydrophilic polypeptide of 35 kD in molecular mass. In confirmation, immunoprecipitation experiments demonstrated SEC14p to be an unglycosylated polypeptide, with an apparent molecular mass of some 37 kD, that behaved predominantly as a cytosolic protein in subcellular fractionation experiments. These data were consistent with the notion that SEC14p is a cytosolic factor that promotes protein export from yeast Golgi. Additional radiolabeling experiments also revealed the presence of SEC14p-related polypeptides in extracts prepared from the yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. Furthermore, the K. lactis SEC14p was able to functionally complement S. cerevisiae sec14ts defects. These data suggested a degree of conservation of SEC14p structure and function in these yeasts species.  相似文献   

7.
Cells of a Saccharomyces cerevisiae mutant that is temperature-sensitive for secretion and cell surface growth become dense during incubation at the non-permissive temperature (37°C). This property allows the selection of additional secretory mutants by sedimentation of mutagenized cells on a Ludox density gradient. Colonies derived from dense cells are screened for conditional growth and secretion of invertase and acid phosphatase. The sec mutant strains that accumulate an abnormally large intracellular pool of invertase at 37°C (188 mutant clones) fall into 23 complementation groups, and the distribution of mutant alleles suggests that more complementation groups could be found. Bud emergence and incorporation of a plasma membrane sulfate permease activity stop quickly after a shift to 37°C. Many of the mutants are thermoreversible; upon return to the permissive temperature (25°C) the accumulated invertase is secreted. Electron microscopy of sec mutant cells reveals, with one exception, the temperature-dependent accumulation of membrane-enclosed secretory organelles. We suggest that these structures represent intermediates in a pathway in which secretion and plasma membrane assembly are colinear.  相似文献   

8.
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50 = 38.4 nM) than Golgi and vacuole pumps (I50 = 0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.  相似文献   

9.
The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yeast, we constructed a SUC2-WBP1 chimera consisting of the coding sequence for the normally secreted glycoprotein invertase fused to the coding sequence of the COOH terminus (including the transmembrane domain and 16-amino acid cytoplasmic tail) of Wbplp. Carbohydrate analysis of the invertase-Wbp1 fusion protein using mannose linkage-specific antiserum demonstrated that the fusion protein was efficiently modified by the early Golgi initial alpha 1,6 mannosyltransferase (Och1p). Subcellular fractionation revealed that > 90% of the alpha 1,6 mannose-modified fusion protein colocalized with the ER (Wbp1p) and not with the Golgi Och1p-containing compartment or other membrane fractions. Amino acid changes within the dily sine motif (KK-->QK, KQ, or QQ) did not change the kinetics of initial alpha 1,6 mannose modification of the fusion protein but did dramatically increase the rate of modification by more distal Golgi (elongating alpha 1,6 and alpha 1,3) mannosyltransferases. These mutant fusion proteins were then delivered directly from a late Golgi compartment to the vacuole, where they were proteolytically cleaved in a PEP4-dependent manner. While amino acids surrounding the dilysine motif played only a minor role in retention ability, mutations that altered the position of the lysines relative to the COOH terminus of the fusion protein also yielded a dramatic defect in ER retention. Collectively, our results indicate that the KKXX motif does not simply retain proteins in the ER but rather directs their rapid retrieval from a novel, Och1p-containing early Golgi compartment. Similar to observations in mammalian cells, it is the presence of two lysine residues at the appropriate COOH-terminal position which represents the most important features of this sorting determinant.  相似文献   

10.
Several soluble proteins that reside in the lumen of the ER contain a specific C-terminal sequence (KDEL) which prevents their secretion. This sequence may be recognized by a receptor that either immobilizes the proteins in the ER, or sorts them from other proteins at a later point in the secretory pathway and returns them to their normal location. To distinguish these possibilities, I have attached an ER retention signal to the lysosomal protein cathepsin D. The oligosaccharide side chains of this protein are normally modified sequentially by two enzymes to form mannose-6-phosphate residues; these enzymes do not act in the ER, but are thought to be located in separate compartments within (or near) the Golgi apparatus. Cathepsin D bearing the ER signal accumulates within the ER, but continues to be modified by the first of the mannose-6-phosphate forming enzymes. Modification is strongly temperature-dependent, which is also a feature of ER-to-Golgi transport. These results support the idea that luminal ER proteins are continuously retrieved from a post-ER compartment, and that this compartment contains N-acetylglucosaminyl-1-phosphotransferase activity.  相似文献   

11.
Immunoelectron microscopy of Saccharomyces cerevisiae cells embedded in Lowicryl K4M has been used to localize invertase and plasma membrane (PM) ATPase in secretory organelles. sec mutant cells incubated at 37 degrees C were prepared for electron microscopy, and thin sections were incubated with polyclonal antibodies, followed by decoration with protein A-gold. Specific labeling of invertase was seen in the lumen of the endoplasmic reticulum, Golgi apparatus, and secretory vesicles in mutant cells that exaggerate these organelles. PM ATPase accumulated within the same organelles. Double-immune labeling revealed that invertase and PM ATPase colocalized in secretory vesicles. These results strengthen the view that secretion and plasma membrane assembly are biosynthetically coupled in yeast.  相似文献   

12.
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2641-2652
Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.  相似文献   

14.
Heat shock and the sorting of luminal ER proteins.   总被引:20,自引:1,他引:19       下载免费PDF全文
H R Pelham 《The EMBO journal》1989,8(11):3171-3176
  相似文献   

15.
Temperature-sensitive secretory mutants (sec) of S. cerevisiae have been used to evaluate the organelles and cellular functions involved in transport of the vacuolar glycoprotein, carboxypeptidase Y (CPY). Others have shown that CPY (61 kd) is synthesized as an inactive proenzyme (69 kd) that is matured by cleavage of an 8 kd amino-terminal propeptide. sec mutants that are blocked in either of two early stages in the secretory process and accumulate endoplasmic reticulum or Golgi bodies also accumulate precursor forms of CPY when cells are incubated at the nonpermissive temperature (37°C). These forms are converted to a proper size when cells are returned to a permissive temperature (25°C). Vacuoles isolated from sec mutant cells do not contain the proCPY produced at 37°C. These results suggest that vacuolar and secretory glycoproteins require the same cellular functions for transport from the endoplasmic reticulum and from the Golgi body. The Golgi body represents a branch point in the pathway: from this organelle, vacuolar proenzymes are transported to the vacuole for proteolytic processing and secretory proteins are packaged into vesicles.  相似文献   

16.
Several complementary approaches have been fruitful in the study of transport from the ER to the Golgi complex in yeast. Mutational analysis has led to the identification of genes required for this process, many of which are now being studied at the molecular and biochemical level. In the case of SEC18, DNA sequence analysis has demonstrated homology to a factor needed for transport in mammalian in vitro systems. In addition, the events that take place at this stage of the secretory pathway have been reconstituted in vitro.  相似文献   

17.
SRV2, a gene required for RAS activation of adenylate cyclase in yeast   总被引:29,自引:0,他引:29  
We have identified a gene, SRV2, mutations of which alleviate stress sensitivity in strains carrying an activated RAS gene. Epistasis analysis suggests that the gene affects accumulation of cAMP in the cell. Direct assays of cAMP accumulation indicate that mutations of the gene diminish the rate of in vivo production of cAMP following stimulation by an activated RAS allele. Null mutations of srv2 result in lethality, which cannot be suppressed by mutational activation of the cAMP-dependent protein kinase. The sequence of the gene indicates that it encodes an adenylate cyclase-associated protein. These results demonstrate that SRV2 protein is required for RAS-activated adenylate cyclase activity, but that it participates in other essential cellular functions as well.  相似文献   

18.
Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.  相似文献   

19.
20.
Recycling of proteins from the Golgi compartment to the ER in yeast   总被引:32,自引:12,他引:20       下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the carboxyl terminal sequence His-Asp-Glu-Leu (HDEL) has been shown to function as an ER retention sequence (Pelham, H. R. B., K. G. Hardwick, and M. J. Lewis. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1757-1762). To examine the mechanism of retention of soluble ER proteins in yeast, we have analyzed the expression of a preproalpha factor fusion protein, tagged at the carboxyl terminus with the HDEL sequence. We demonstrate that this fusion protein, expressed in vivo, accumulates intracellularly as a precursor containing both ER and Golgi-specific oligosaccharide modifications. The Golgi-specific carbohydrate modification, which occurs in a SEC18-dependent manner, consists of alpha 1-6 mannose linkages, with no detectable alpha 1-3 mannose additions, indicating that the transit of the HDEL-tagged fusion protein is confined to an early Golgi compartment. Results obtained from the fractionation of subcellular organelles from yeast expressing HDEL-tagged fusion proteins suggest that the Golgi-modified species are present in the ER. Overexpression of HDEL-tagged preproalpha factor results in the secretion of an endogenous HDEL-containing protein, demonstrating that the HDEL recognition system can be saturated. These results support the model in which the retention of these proteins in the ER is dependent on their receptor-mediated recycling from the Golgi complex back to the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号