首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice field soils contain a thermophilic microbial community. Incubation of Italian rice field soil at 50°C resulted in transient accumulation of acetate, but the microorganisms responsible for methane production from acetate are unknown. Without addition of exogenous acetate, the δ(13)C of CH(4) and CO(2) indicated that CH(4) was exclusively produced by hydrogenotrophic methanogenesis. When exogenous acetate was added, acetoclastic methanogenesis apparently also operated. Nevertheless, addition of [2-(13)C]acetate (99% (13)C) resulted in the production not only of (13)C-labelled CH(4) but also of CO(2), which contained up to 27% (13)C, demonstrating that the methyl group of acetate was also oxidized. Part of the (13)C-labelled acetate was also converted to propionate which contained up to 14% (13)C. The microorganisms capable of assimilating acetate at 50°C were targeted by stable isotope probing (SIP) of ribosomal RNA and rRNA genes using [U-(13)C] acetate. Using quantitative PCR, (13)C-labelled bacterial ribosomal RNA and DNA was detected after 21 and 32 days of incubation with [U-(13)C]acetate respectively. In the heavy fractions of the (13)C treatment, terminal restriction fragments (T-RFs) of 140, 120 and 171 bp length predominated. Cloning and sequencing of 16S rRNA showed that these T-RFs were affiliated with the bacterial genera Thermacetogenium and Symbiobacterium and with members of the Thermoanaerobacteriaceae. Similar experiments targeting archaeal RNA and DNA showed that Methanocellales were the dominant methanogens being consistent with the operation of syntrophic bacterial acetate oxidation coupled to hydrogenotrophic methanogenesis. After 17 days, however, Methanosarcinacea increasingly contributed to the synthesis of rRNA from [U-(13)C]acetate indicating that acetoclastic methanogens were also active in methanogenic Italian rice field soil under thermal conditions.  相似文献   

2.
Butyrate-degrading bacteria in four methanogenic sludges were studied by RNA-based stable isotope probing. Bacterial populations in the (13)C-labeled rRNA fractions were distinct from unlabeled fractions, and Syntrophaceae species, Tepidanaerobacter sp., and Clostridium spp. dominated. These results suggest that diverse microbes were active in butyrate degradation under methanogenic conditions.  相似文献   

3.
The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

4.
Long-chain fatty acid (LCFA) degradation is a key step in methanogenic treatment of wastes/wastewaters containing high concentrations of lipids. However, despite the importance of LCFA-degrading bacteria, their natural diversity is little explored due to the limited availability of isolate information and the lack of appropriate molecular markers. We therefore investigated these microbes by using RNA-based stable isotope probing. We incubated four methanogenic sludges (mesophilic sludges MP and MBF and thermophilic sludges TP and JET) with (13)C-labeled palmitate (1 mM) as a substrate. After 8 to 19 days of incubation, we could detect (13)C-labeled bacterial rRNA. A density-resolved terminal restriction fragment length polymorphism fingerprinting analysis showed distinct bacterial populations in (13)C-labeled and unlabeled rRNA fractions. The bacterial populations in the (13)C-labeled rRNA fractions were identified by cloning and sequencing of reverse-transcribed 16S rRNA. Diverse phylogenetic bacterial sequences were retrieved, including those of members of the family Syntrophaceae, clone cluster MST belonging to the class Deltaproteobacteria, Clostridium clusters III and IV, phylum Bacteroidetes, phylum Spirochaetes, and family Syntrophomonadaceae. Although Syntrophomonadaceae species are considered to be the major fatty acid-degrading syntrophic microorganisms under methanogenic conditions, they were detected in only two of the clone libraries. These results suggest that phylogenetically diverse bacterial groups were active in situ in the degradation of LCFA under methanogenic conditions.  相似文献   

5.
Propionate is an important intermediate of the degradation of organic matter in many anoxic environments. In methanogenic environments, due to thermodynamic constraints, the oxidation of propionate requires syntrophic cooperation of propionate-fermenting proton-reducing bacteria and H(2)-consuming methanogens. We have identified here microorganisms that were active in syntrophic propionate oxidation in anoxic paddy soil by rRNA-based stable-isotope probing (SIP). After 7 weeks of incubation with [(13)C]propionate (<10 mM) and the oxidation of approximately 30 micromol of (13)C-labeled substrate per g dry weight of soil, we found that archaeal nucleic acids were (13)C labeled to a larger extent than those of the bacterial partners. Nevertheless, both terminal restriction fragment length polymorphism and cloning analyses revealed Syntrophobacter spp., Smithella spp., and the novel Pelotomaculum spp. to predominate in "heavy" (13)C-labeled bacterial rRNA, clearly showing that these were active in situ in syntrophic propionate oxidation. Among the Archaea, mostly Methanobacterium and Methanosarcina spp. and also members of the yet-uncultured "rice cluster I" lineage had incorporated substantial amounts of (13)C label, suggesting that these methanogens were directly involved in syntrophic associations and/or thriving on the [(13)C]acetate released by the syntrophs. With this first application of SIP in an anoxic soil environment, we were able to clearly demonstrate that even guilds of microorganisms growing under thermodynamic constraints, as well as phylogenetically diverse syntrophic associations, can be identified by using SIP. This approach holds great promise for determining the structure and function relationships of further syntrophic or other nutritional associations in natural environments and for defining metabolic functions of yet-uncultivated microorganisms.  相似文献   

6.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

7.
Rice field soils turn anoxic upon flooding. The complete mineralization of organic matter, e.g. cellulose, to gaseous products is then accomplished by the sequential reduction of nitrate, ferric iron, sulfate and finally by methanogenesis. Therefore, the anaerobic turnover of [U-(14)C]cellulose was investigated in fresh, non-methanogenic and in preincubated, methanogenic slurries of Italian rice field soil. In anoxic soil slurries freshly prepared from air-dried soil [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in a ratio of 3:1. In methanogenic soil slurries, on the other hand, which had been preincubated for 45 days under anaerobic conditions, [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in the ratio of 1:1. The turnover times (7-14 days) of cellulose degradation were not significantly different (P0.05) in fresh and methanogenic soil. Chloroform addition abolished CH(4) production, but only slightly (30%) inhibited cellulose degradation in both fresh and methanogenic soil. Under both soil conditions, [(14)C]acetate was the only labeled intermediate detected. A maximum of 24% of the applied radioactivity was transiently accumulated as [(14)C]acetate in both fresh and methanogenic soil slurries. However, when methanogenesis was inhibited by chloroform, 46% and 66% of the applied radioactivity were recovered as [(14)C]acetate in fresh and methanogenic soil, respectively. Only non-radioactive propionate accumulated during the incubation with [U-(14)C]cellulose, especially in the presence of chloroform, indicating that propionate was produced from substrates other than cellulose.  相似文献   

8.
Turnover of glucose and acetate in the presence of active reduction of nitrate, ferric iron and sulfate was investigated in anoxic rice field soil by using [U-(14)C]glucose and [2-(14)C]acetate. The turnover of glucose was not much affected by addition of ferrihydrite or sulfate, but was partially inhibited (60%) by addition of nitrate. Nitrate addition also strongly reduced acetate production from glucose while ferrihydrite and sulfate addition did not. These results demonstrate that ferric iron and sulfate reducers did not outcompete fermenting bacteria for glucose at endogenous concentrations. Nitrate reducers may have done so, but glucose fermentation may also have been inhibited by accumulation of toxic denitrification intermediates (nitrite, NO, N(2)O). Addition of nitrate resulted in complete inhibition of CH(4) production from [U-(14)C]glucose and [2-(14)C]acetate. However, addition of ferrihydrite or sulfate decreased the production of (14)CH(4) from [U-(14)C]glucose by only 70 and 65%, respectively. None of the electron acceptors significantly increased the production of (14)CO(2) from [U-(14)C]glucose, but all increased the production of (14)CO(2) from [2-(14)C]acetate. Uptake of acetate was faster in the presence of either nitrate, ferrihydrite or sulfate than in the unamended control. Addition of ferrihydrite and sulfate reduced (14)CH(4) production from [2-(14)C]acetate by 83 and 92%, respectively. Chloroform completely inhibited the methanogenic consumption of acetate. It also inhibited the oxidation of acetate, completely in the presence of sulfate, but not in the presence of nitrate or ferrihydrite. Our results show that, besides the possible toxic effect of products of nitrate reduction (NO, NO(2)(-) and N(2)O) on methanogens, nitrate reducers, ferric iron reducers and sulfate reducers were active enough to outcompete methanogens for acetate and channeling the flow of electrons away from CH(4) towards CO(2) production.  相似文献   

9.
A gas chromatographic procedure for the simultaneous analysis of (14)C-labeled and unlabeled metabolic gases from microbial methanogenic systems is described. H(2), CH(4), and CO(2) were separated within 2.5 min on a Carbosieve B column and were detected by thermal conductivity. Detector effluents were channeled into a gas proportional counter for measurement of radioactivity. This method was more rapid, sensitive, and convenient than gas chromatography-liquid scintillation techniques. The gas chromatography-gas proportional counting procedure was used to characterize the microbial decomposition of organic matter in anaerobic lake sediments and to monitor (14)CH(4) formation from H(2) and (14)CO(2) by Methanosarcina barkeri.  相似文献   

10.
The short-term effects of temperature on methanogenesis from acetate or CO(2) in a thermophilic (58 degrees C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with C-labeled methane precursors (CH(3)COO or CO(2)). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60 degrees C and was completely inhibited at 65 degrees C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58 degrees C and did not grow or produce methane at 65 degrees C. An accidental shift of digestor temperature from 58 to 64 degrees C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from CH(3)COO was optimal at 65 degrees C and completely inhibited at 75 degrees C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70 degrees C. Methanogenesis from CO(2) in the sludge was optimal at 65 degrees C and still proceeded at 75 degrees C. A CO(2)-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75 degrees C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65 degrees C produced more methane than sludge incubated at 60 degrees C, and no acetate accumulated at 65 degrees C. Methanogenesis was severely inhibited in sludge incubated at 70 degrees C, but since neither acetate nor H(2) accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

11.
Detailed studies on the relation of structure and function of microbial communities in a sediment depth profile scarcely exist. We determined as functional aspect the vertical distribution of the acetotrophic and hydrogenotrophic CH4 production activity by measuring production rates and stable 13C/12C-isotopic signatures of CH4 in the profundal sediment of Lake Dagow. The structural aspect was determined by the composition of the methanogenic community by quantifying the abundance of different archaeal groups using 'real-time' polymerase chain reaction and analysis of terminal restriction fragment length polymorphism (T-RFLP). Methane production rates in the surface sediment (0-3 cm depth) were higher in August than in May, but strongly decreased with depth (down to 20 cm). The delta13C of the produced CH4 and CO2 indicated an increase in isotopic fractionation with sediment depth. The relative contribution of hydrogenotrophic to total methanogenesis, which was calculated from the isotopic signatures, increased with depth from about 22% to 38%. Total numbers of microorganisms were higher in August than in May, but strongly decreased with depth. The increase of microorganisms from May to August mainly resulted from Bacteria. The Archaea, on the other hand, exhibited a rather constant abundance, but also decreased with depth from about 1 x 10(8) copies of the archaeal 16S rRNA gene per gram of dry sediment at the surface to 4 x 10(7) copies per gram at 15-20 cm depth. T-RFLP analysis combined with phylogenetic analysis of cloned sequences of the archaeal 16S rRNA genes showed that the methanogenic community consisted mainly of Methanomicrobiales and Methanosaetaceae. The relative abundance of Methanosaetaceae decreased with depth, whereas that of Methanomicrobiales slightly increased. Hence, the vertical distribution of the functional characteristics (CH4 production from acetate versus H2/CO2) was reflected in the structure of the community consisting of acetotrophic (Methanosaetaceae) versus hydrogenotrophic (Methanomicrobiales) phenotypes.  相似文献   

12.
Propionate is an important intermediate of the degradation of organic matter in many anoxic environments. In methanogenic environments, due to thermodynamic constraints, the oxidation of propionate requires syntrophic cooperation of propionate-fermenting proton-reducing bacteria and H2-consuming methanogens. We have identified here microorganisms that were active in syntrophic propionate oxidation in anoxic paddy soil by rRNA-based stable-isotope probing (SIP). After 7 weeks of incubation with [13C]propionate (<10 mM) and the oxidation of ~30 μmol of 13C-labeled substrate per g dry weight of soil, we found that archaeal nucleic acids were 13C labeled to a larger extent than those of the bacterial partners. Nevertheless, both terminal restriction fragment length polymorphism and cloning analyses revealed Syntrophobacter spp., Smithella spp., and the novel Pelotomaculum spp. to predominate in “heavy” 13C-labeled bacterial rRNA, clearly showing that these were active in situ in syntrophic propionate oxidation. Among the Archaea, mostly Methanobacterium and Methanosarcina spp. and also members of the yet-uncultured “rice cluster I” lineage had incorporated substantial amounts of 13C label, suggesting that these methanogens were directly involved in syntrophic associations and/or thriving on the [13C]acetate released by the syntrophs. With this first application of SIP in an anoxic soil environment, we were able to clearly demonstrate that even guilds of microorganisms growing under thermodynamic constraints, as well as phylogenetically diverse syntrophic associations, can be identified by using SIP. This approach holds great promise for determining the structure and function relationships of further syntrophic or other nutritional associations in natural environments and for defining metabolic functions of yet-uncultivated microorganisms.  相似文献   

13.
The stimulation of bacteria capable of reducing soluble U(VI) to sparingly soluble U(IV) is a promising approach for containing U(VI) plumes. Anaeromyxobacter dehalogenans is capable of mediating this activity; however, its ability to couple U(VI) reduction to growth has not been established. Monitoring the increase in 16S rRNA gene copy numbers using quantitative real-time PCR (qPCR) in cultures provided with U(VI) as an electron acceptor demonstrated growth, and 7.7-8.6 x 10(6) cells were produced per mumole of U(VI) reduced. This biomass yield was lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Lower than predicted growth yields with U(VI) as electron acceptor were also determined in cultures of Geobacter lovleyi and Geobacter sulfurreducens suggesting that U(VI) reduction is inefficient or imposes an additional cost to growing cells. These findings have implications for U(VI) bioremediation because Anaeromyxobacter spp. and Geobacter spp. contribute to radionuclide immobilization in contaminated subsurface environments.  相似文献   

14.
Sites in the West Siberian peat bog 'Bakchar' were acidic (pH 4.2-4.8), low in nutrients, and emitted CH4 at rates of 0.2-1.5 mmol m(-2) h(-1). The vertical profile of delta13CH4 and delta13CO2 dissolved in the porewater indicated increasing isotope fractionation and thus increasing contribution of H2/CO2-dependent methanogenesis with depth. The anaerobic microbial community at 30-50 cm below the water table produced CH4 with optimum activity at 20-25 degrees C and pH 5.0-5.5 respectively. Inhibition of methanogenesis with 2-bromo-ethane sulphonate showed that acetate, phenyl acetate, phenyl propionate and caproate were important intermediates in the degradation pathway of organic matter to CH4. Further degradation of these intermediates indicated that 62-72% of the CH4 was ultimately derived from acetate, the remainder from H2/CO2. Turnover times of [2-14C]acetate were on the order of 2 days (15, 25 degrees C) and accounted for 60-65% of total CH4 production. Conversion of 14CO2 to 14CH4 accounted for 35-43% of total CH4 production. These results showed that acetoclastic and hydrogenotrophic methanogenesis operated closely at a ratio of approximately 2 : 1 irrespective of the incubation temperature (4, 15 and 25 degrees C). The composition of the archaeal community was determined in the peat samples by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of amplified SSU rRNA gene fragments, and showed that members of Methanomicrobiaceae, Methanosarcinaceae and Rice cluster II (RC-II) were present. Other, presumably non-methanogenic archaeal clusters (group III, RC-IV, RC-V, RC-VI) were also detected. Fluorescent in situ hybridization (FISH) showed that the number of Bacteria decreased (from 24 x 10(7) to 4 x 10(7) cells per gram peat) with depth (from 5 to 55 cm below the water table), whereas the numbers of Archaea slightly increased (from 1 x 10(7) to 2 x 10(7) cells per gram peat). Methanosarcina spp. accounted for about half of the archaeal cells. Our results show that both hydrogenotrophic and acetoclastic methanogenesis are an integral part of the CH4-producing pathway in acidic peat and were represented by appropriate methanogenic populations.  相似文献   

15.
【目的】革兰氏阴性菌Geobacter metallireducens可以与乙酸型产甲烷菌Methanosaeta harundinacea或Methanosarcina barkeri通过种间直接电子传递(DIET)还原CO2产甲烷。本实验室前期的研究发现Methanosarcina mazei和Geobacteraceae在铁还原富集培养中形成团聚体,可能存在直接电子传递。然而,革兰氏阳性菌(如Clostridium spp.)与产甲烷菌是否存在种间直接电子传递尚不明确。【方法】采用Hungate厌氧滚管法,以乙醇为唯一电子供体从铁还原富集培养体系中获得产甲烷分离物(S6)。通过T-RFLP及克隆文库分析群落多样性,结合循环伏安法等电化学方法研究产甲烷分离物的电活性。【结果】Clostridium spp.(与C.tunisiense相似性最高)和M.barkeri分别在S6细菌和古菌群落中占优势。S6与G.metallireducens共培养后铁还原和产甲烷能力未明显增加,Clostridium spp.可能与G.metallireducens类似,将电子直接传递给产甲烷菌M.barkeri产甲烷。此外,电化学检测发现,在用透析袋包裹电极阻碍微生物与电极表面通过直接接触形成生物膜的条件下,电流密度显著降低,并且循环伏安扫描无明显氧化还原峰。【结论】产甲烷分离物S6中存在直接电子传递途径。本工作提出在产甲烷分离物中占优势的革兰氏阳性菌Clostridium spp.和M.barkeri之间可能存在种间直接电子传递。  相似文献   

16.
Methyl fluoride is frequently used to specifically inhibit acetoclastic methanogenesis, thus allowing determination of the relative contribution of acetate versus H2/CO2 to total CH4 production in natural environments. However, the effect of the inhibitor on growth of the target archaeal population has not yet been studied. Therefore, we incubated rice roots as an environmental model system under anoxic conditions in the presence and absence of CH3F, measured the activity and Gibbs free energy (DeltaG) of CH4 production, and determined the abundance of individual archaeal populations by using a combination of quantitative (real-time) PCR and analysis of terminal restriction fragment length polymorphism targeting the 16S rRNA gene. It was shown that CH3F specifically inhibited not only acetoclastic methanogenic activity but also the proliferation of Methanosarcina spp, which were the prevalent acetoclastic methanogens in our environmental model system. Therefore, inhibition experiments with CH3F seem to be a suitable method for quantifying acetoclastic CH4 production. It is furthermore shown that the growth and final population size of methanogens were consistent with energetic conditions that at least covered the maintenance requirements of the population.  相似文献   

17.
Fingerprinting techniques provide access to understanding the ecology of uncultured microbial consortia. However, the application of current techniques such as terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) has been hindered due to their limitations in characterizing complex microbial communities. This is due to that different populations possibly share the same terminal restriction fragments (T-RFs) and DNA fragments may co-migrate on DGGE gels. To overcome these limitations, a new approach was developed to separate terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel (T-RFs-2D). T-RFs-2D involves restriction digestion of terminal fluorescence-labelled PCR amplified 16S rRNA gene products and their high-resolution separation via a two-dimensional (2D) gel electrophoresis based on the T-RF fragment size (1(st) D) and its sequence composition on the denaturing gradient gel (2(nd) D). The sequence information of interested T-RFs on 2D gels can be obtained through serial poly(A) tailing reaction, PCR amplification and subsequent DNA sequencing. By employing the T-RFs-2D method, bacteria with MspI digested T-RF size of 436 (±1) bp and 514 (±1) bp were identified to be a Lysobacter sp. and a Dehalococcoides sp. in a polychlorinated biphenyl (PCB) dechlorinating culture. With the high resolution of 2D separation, T-RFs-2D separated 63 DNA fragments in a complex river-sediment microbial community, while traditional DGGE detected only 41 DNA fragments in the same sample. In all, T-RFs-2D has its advantage in obtaining sequence information of interested T-RFs and also in characterization of complex microbial communities.  相似文献   

18.
Our goal was to develop a field soil biodegradation assay using (13)C-labeled compounds and identify the active microorganisms by analyzing 16S rRNA genes in soil-derived (13)C-labeled DNA. Our biodegradation approach sought to minimize microbiological artifacts caused by physical and/or nutritional disturbance of soil associated with sampling and laboratory incubation. The new field-based assay involved the release of (13)C-labeled compounds (glucose, phenol, caffeine, and naphthalene) to soil plots, installation of open-bottom glass chambers that covered the soil, and analysis of samples of headspace gases for (13)CO(2) respiration by gas chromatography/mass spectrometry (GC/MS). We verified that the GC/MS procedure was capable of assessing respiration of the four substrates added (50 ppm) to 5 g of soil in sealed laboratory incubations. Next, we determined background levels of (13)CO(2) emitted from naturally occurring soil organic matter to chambers inserted into our field soil test plots. We found that the conservative tracer, SF(6), that was injected into the headspace rapidly diffused out of the soil chamber and thus would be of little value for computing the efficiency of retaining respired (13)CO(2). Field respiration assays using all four compounds were completed. Background respiration from soil organic matter interfered with the documentation of in situ respiration of the slowly metabolized (caffeine) and sparingly soluble (naphthalene) compounds. Nonetheless, transient peaks of (13)CO(2) released in excess of background were found in glucose- and phenol-treated soil within 8 h. Cesium-chloride separation of (13)C-labeled soil DNA was followed by PCR amplification and sequencing of 16S rRNA genes from microbial populations involved with (13)C-substrate metabolism. A total of 29 full sequences revealed that active populations included relatives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobacterium, and Pedobacter spp. for glucose; Pseudomonas, Pantoea, Acinetobacter, Enterobacter, Stenotrophomonas, and Alcaligenes spp. for phenol; Pseudomonas, Acinetobacter, and Variovorax spp. for naphthalene; and Acinetobacter, Enterobacter, Stenotrophomonas, and Pantoea spp. for caffeine.  相似文献   

19.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via beta-oxidation and subsequently completely degraded into acetate, CH(4), and CO(2). Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH(4), and CO(2). A new anaerobic degradation pathway of cinnamate into benzoate via beta-oxidation by a pure culture of P. cinnamivorans is proposed.  相似文献   

20.
Organic matter mineralization with the reduction of ferric iron: A review   总被引:1,自引:0,他引:1  
A review of the literature indicates that numerous microorganisms can reduce ferric iron during the metabolism of organic matter. In most cases, the reduction of ferric iron appears to be enzymatically catalyzed and, in some instances, may be coupled to an electron transport chain that could generate ATP. However, the physiology and biochemistry of ferric iron reduction are poorly understood. In pure culture, ferric iron‐reducing organisms metabolize fermentable substrates, such as glucose, primarily to typical fermentation products, and transfer only a minor portion of the electron equivalents in the fermentable substrates to ferric iron. However, fermentation products, especially hydrogen and acetate, may be important electron donors for ferric iron reduction in natural environments. The ability of some organisms to couple the oxidation of fermentation products to the reduction of ferric iron means that it is possible for a food chain of iron‐reducing organisms to completely mineralize nonrecalcitrant organic matter with ferric iron as the sole electron acceptor. The rate and extent of ferric iron reduction depend on the forms of ferric iron that are available. Most of the ferric iron in sediments is resistant to microbial reduction. Ferric iron‐reducing organisms can exclude sulfate reduction and methane production from the zone of ferric iron reduction in sediments by outcompeting sulfate‐reducing and methanogenic food chains for organic matter when ferric iron is available as amorphic ferric oxyhydroxide. There are few quantitative estimates of the rates of ferric iron reduction in natural environments, but there is evidence that ferric iron reduction can be an important pathway for organic matter decomposition in some environments. There is a strong need for further study on all aspects of microbial reduction of ferric iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号