首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemosensory neurons in the olfactory epithelium (OE) project axonal processes to the olfactory bulb (OB) of the brain. During embryonic stages, on their trajectory to the OB, the outgrowing axons traverse the so-called cribriform mesenchyme, which is located between the OE and the OB. The molecular cues guiding these axons through the cribriform mesenchyme are largely unknown. To identify molecules influencing the axonal trajectory in the murine cribriform mesenchyme, we performed microarray analyses focusing on extracellular matrix (ECM) proteins present in this tissue. Thereby, the ECM protein Reelin turned out to be an interesting candidate. Reelin was found to be expressed by numerous cells in the cribriform mesenchyme during the embryonic stages when the first axons navigate from the OE to the OB. These cells were closely associated with olfactory axons and apparently lack glial and neuronal markers. In the mesenchyme underlying the OE, localization of the Reelin protein was not confined to the Reelin-expressing cells, but it was also observed to be widely distributed in the ECM—most prominently in regions traversed by olfactory axons. Importantly, these axons were found to be endowed with the Reelin receptor very-low-density lipoprotein receptor (VLDLR). Finally, Reelin expression was also detectable in neuronal cells of the OB, which are contacted by VLDLR-positive olfactory axons. In summary, the results of the present study suggest that a Reelin/VLDLR signaling pathway might contribute to the formation of olfactory projections to the OB and the establishment of initial contacts between the incoming axons and neurons in the OB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Funding:  This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

2.
Olfactory receptors (ORs) are expressed in sensory neurons of the nasal epithelium, where they are supposed to be involved in the recognition of suitable odorous compounds and in the guidance of outgrowing axons towards the appropriate glomeruli in the olfactory bulb. During development, some olfactory receptor subtypes have also been found in non-sensory tissues, including the cribriform mesenchyme between the prospective olfactory epithelium and the developing telencephalon, but it is elusive if this is a typical phenomenon for ORs. Monitoring the onset and time course of expression for several receptor subtypes revealed that 'extraepithelial' expression of ORs occurs very early and transiently, in particular between embryonic stages E10.25 and E14.0. In later stages, a progressive loss of receptor expressing cells was observed. Molecular phenotyping demonstrated that the receptor expressing cells in the cribriform mesenchyme co-express key elements, including Galpha(olf), ACIII and OMP, characteristic for olfactory neurons in the nasal epithelium. Studies on transgenic OMP/GFP-mice showed that 'extraepithelial' OMP/GFP-positive cells are located in close vicinity to axon bundles projecting from the nasal epithelium to the presumptive olfactory bulb. Moreover, these cells are primarily located where axons fasciculate and change direction towards the anterior part of the forebrain.  相似文献   

3.
During critical phases of mouse development, axons from olfactory sensory neurons grow out of the nasal neuroepithelium and navigate through the connective mesenchyme tissue towards their targets in the developing telencephalic vesicle. Between embryonic days E11 and E16, populations of cells are located in the mesenchyme which express distinct olfactory receptor genes along with the olfactory marker protein (OMP); thus they express markers characteristic for mature olfactory sensory neurons. These extraepithelial cells are positioned along the axon tracts, and each population expressing a given receptor gene is specifically associated with the axons of those olfactory sensory neurons with the same receptor type. The data suggest that they either might be guide posts for the outgrowing axons or migrate along the axons into the brain.  相似文献   

4.
The Src-family tyrosine kinases p59fyn and pp60c-src are localized on axons of the mouse olfactory nerve during the initial stages of axonal growth, but their functional roles remain to be defined. To study the role of these kinases, we analyzed the trajectory of the olfactory nerve in E11.5 homozygous null mutant mice lacking single src or fyn genes and double mutants lacking both genes. Primary olfactory axons of single and double mutants exited the olfactory epithelium and projected toward the telencephalon, but displayed differences in fasciculation. The fyn-minus olfactory nerve had significantly more fascicles than the src-minus nerve. Most strikingly, the primary olfactory nerve of src/fyn double mutants showed the greatest degree of defasciculation. These defects, identified by NCAM labeling, were not due to apparent changes in the size of the olfactory epithelium. With the exception of the src-minus mice, which had fewer fascicles than the wild type, no obvious differences were observed in coalescence of vomeronasal axons from mutant mice. The mesenchyme of the double and single mutants exhibited only subtle changes in laminin and fibronectin staining, indicating that the adhesive environment of the mesenchyme may contribute in part to defects in fasciculation. The results suggest that signaling pathways mediated by p59fyn and pp60c-src contribute to the appropriate fasciculation of axons in the nascent olfactory system, and comprise partially compensatory mechanisms for axonal adhesion and guidance. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 53–63, 1998  相似文献   

5.
As a prerequisite for exploring the mechanisms which lead to the formation and maintenance of the precise wiring patterns in the olfactory system, organotypic cultures of olfactory tissue from transgenic mice expressing green fluorescent protein (GFP) under control of the olfactory marker protein promotor have been established. Tissue specimen from embryonic stage 14 were explanted and kept in culture for >1 week. Within the explants, numerous GFP-fluorescent olfactory sensory neurons assembled in an epithelial-like manner during this period. Under optimized culture conditions, strongly GFP-positive axons extended from these explants, fasciculated and formed bundles. When co-cultured with explants from the olfactory bulb, distinct axon populations were attracted by the target tissue; the fluorescent axon bundles invaded the bulbular explants and formed conglomerates at distinct spots. Explants from transgenic mice expressing GFP under control of a given olfactory receptor gene (mOR37A) also comprised labeled neurons that extended intensely fluorescent axonal processes, which all seemed to grow in a common fascicle. The results demonstrate that GFP-labeled olfactory sensory neurons differentiate in the established organotypic cultures, which thus appear to be a useful tool to monitor and to manipulate the processes underlying the axonal wiring between the olfactory epithelium and bulb.  相似文献   

6.
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.  相似文献   

7.
Odorant receptors (ORs) provide the core determinant of identity for axons of olfactory sensory neurons (OSNs) to coalesce into glomeruli in the olfactory bulb. Here, using gene targeting in mice, we examine how the OR protein determines axonal identity. An OR::GFP fusion protein is present in axons, consistent with a direct function of ORs in axon guidance. When the OR coding region is deleted, we observe OSNs that coexpress other ORs that function in odorant reception and axonal identity. It remains unclear if such coexpression is normally prevented by negative feedback on OR gene choice. A drastic reduction in OR protein level produces axonal coalescence into novel, remote glomeruli. By contrast, chimeric ORs and ORs with minor mutations perturb axon outgrowth. Strikingly, the beta2 adrenergic receptor can substitute for an OR in glomerular formation when expressed from an OR locus. Thus, ORs have not evolved a unique function in axon guidance.  相似文献   

8.
Primary olfactory neurons arise from placodal neuroepithelium that is separate from the neuroepithelial plate that forms the neural tube and crest. The axons of these neurons course along a stereotypical pathway and invade the rostral telencephalic vesicle where they induce the formation of the olfactory bulb. In the present study we examined the expression of several extracellular matrix constituents during formation of the olfactory nerve pathway in order to identify putative developmentally significant molecules. Double-label immunofluorescence was used to simultaneously map the trajectory of growing primary olfactory axons by expression of growth associated protein 43 (GAP-43) and the distribution of either laminin, heparan sulfate proteoglycans (HSPG), or chondroitin sulfate proteoglycans (CSPG). At embryonic day 12.5 (E12.5) primary olfactory axons have exited the olfactory neuroepithelium of the nasal pit and formed a rudimentary olfactory nerve. These axons together with migrating neural cells form a large mass outside the rostral surface of the telencephalon. This nerve pathway is clearly defined by a punctate distribution of laminin and HSPG. CSPG is selectively present in the mesenchyme between the olfactory nerve pathway and the nasal pit and in the marginal zone of the telencephalon. At E14.5 primary olfactory axons pierce the telencephalon through gaps that have emerged in the basement membrane. At this age both laminin and HSPG are colocalized with the primary olfactory axons that have entered the marginal zone of the telencephalon. CSPG expression becomes downregulated in this same region while it remains highly expressed in the marginal zone adjacent to the presumptive olfactory bulb. By E16.5 most of the basement membrane separating the olfactory nerve from the telencephalon has degraded, and there is direct continuity between the olfactory nerve pathway and the central nervous system. This strict spatiotemporal regulation of extracellular matrix constituents in the olfactory nerve pathway supports an important role of these molecules in axon guidance. We propose that laminin and HSPG are expressed by migrating olfactory Schwann cells in the developing olfactory nerve pathway and that these molecules provide a conducive substrate for axon growth between the olfactory neuroepithelium and the brain. CSPG in the surrounding mesenchyme may act to restrict axon growth to within this pathway. The regional degradation of the basement membrane of the telencephalon and the downregulation of CSPG within the marginal zone probably facilitates the passage of primary olfactory axons into the brain to form the presumptive nerve fiber layer of the olfactory bulb. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project to the necklace glomeruli, which reside between the main and accessory olfactory bulbs. To label the subset of necklace glomeruli that receive axonal input from GC-D+ neurons, we generated two strains of mice with targeted mutations in the GC-D gene (Gucy2d). These mice co-express GC-D with an axonal marker, tau-beta-galactosidase or tauGFP, by virtue of a bicistronic strategy that leaves the coding region of the Gucy2d gene intact. With these strains, the patterns of axonal projections of GC-D+ neurons to necklace glomeruli can be visualized in whole mounts. We show that deficiency of one of the neuropilin 2 ligands of the class III semaphorin family, Sema3f, but not Sema3b, phenocopies the loss of neuropilin 2 (Nrp2) for axonal wiring of GC-D+ neurons. Some glomeruli homogeneously innervated by axons of GC-D+ neurons form ectopically within the glomerular layer, across wide areas of the main olfactory bulb. Similarly, axonal wiring of some vomeronasal sensory neurons is perturbed by a deficiency of Nrp2 or Sema3f, but not Sema3b or Sema3c. Our findings provide genetic evidence for a Nrp2-Sema3f interaction as a determinant of the wiring of axons of GC-D+ neurons into the unusual configuration of necklace glomeruli.  相似文献   

10.
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.  相似文献   

11.
12.
In early rat embryos when axons from sensory neurons first contact the olfactory bulb primordium, lactosamine-containing glycans (LCG) are detected on neurons that are broadly distributed within the olfactory epithelium, but that project axons to a very restricted region of the ventromedial olfactory bulb. LCG(+) axons extend through channels defined by the coexpression of galectin-1 and beta2-laminin. These two extracellular matrix molecules are differentially expressed, along with semaphorin 3A, by subsets of ensheathing cells in the ventral nerve layer of the olfactory bulb. The overlapping expression of these molecules creates an axon-sorting domain that is capable of promoting and repelling subsets of olfactory axons. Specifically, LCG(+) axons preferentially grow into the region of the nerve layer that expresses high amounts of galectin-1, beta2-laminin, and semaphorin 3A, whereas neuropilin-1(+) axons grow in a complementary pattern, avoiding the ventral nerve layer and projecting medially and laterally. These studies suggest that initial patterning of olfactory epithelium to olfactory bulb connections is, in part, dependent on extracellular components of the embryonic nerve layer that mediate convergence and divergence of specific axon subsets.  相似文献   

13.
The antennal lobe of the moth contains several classes of glial cells that are likely to play functional roles in both the developing and mature lobe. In this study, confocal and electron microscopy were used to examine in detail the morphology of two classes of glial cells, those associated with olfactory receptor axons as they course to their targets in the lobe and those that form borders around the synaptic neuropil of the olfactory glomeruli. The former, the nerve-layer glia, have long processes with multiple expansions that enwrap axon fascicles; the latter, the neuropil glia, constitute two subgroups: complex glia with large cell bodies and branching, vellate arbors; and simple glia, with multiple, mostly unbranched processes with many lamellate expansions along their lengths. The processes of complex glia appear to be closely associated with axon fascicles as they enter the glomeruli, while those of the simple glia surround the glomeruli as part of a multi-lamellar glial envelope, their processes rarely invading the synaptic neuropil of the body of the glomerulus. The full morphological development of antennal-lobe glial cells requires more than two-thirds of metamorphic development. During this period, cells that began as cuboidal or spindle-shaped cells that were extensively dye-coupled to one another gradually assume their adult form and, at least under nonstimulated conditions, greatly reduce their coupling. These changes are only weakly dependent on the presence of olfactory receptor axons. Glial processes are somewhat shorter and less branched in the absence of these axons, but basic structure and degree of dye-coupling are unchanged.  相似文献   

14.
Experimental resection of the olfactory nerve in the homing pigeon induces a total degeneration of the nerve and olfactory epithelium. The orthograde degenerative process starts before the retrograde one. Ten days after resection, new neurons begin to differentiate from the basal cells. The axon forms earlier than the distal dendritic process, and the speed of growth increases slowly. The regenerated axons only reach the bulb in the 5th month. Two months after resection the olfactory epithelium is similar to that of the intact control side. The ultrastructural features of the mucosa and olfactory axons are similar to those of normal ones.  相似文献   

15.
Towards elucidating the role of polysialic acid (PSA) in developing olfactory neuron of the rat, we injected neuraminidase (endo-N) into the olfactory nerve pathway under whole embryo culture, then employed immunohistochemistry to (i) detect expression of highly sialylated neural cell adhesion molecules (NCAM-H) and (ii) identify olfactory neurons via anti-microtubule-associated protein 1B (MAP1B) antibody. Olfactory axonal outgrowth from basal lamina occurred at the 31-somite stage and reached the olfactory bulb primordium at the 42-somite stage, being coincident with the timing and expression of NCAM-H immunoreactivity. Enzymatic removal of PSA by endo-N remarkably affected developmental processes of axonal outgrowth, extension, and pathfinding, i.e. individual axons appeared to have become stuck in the mesenchyme. Results indicate that PSA is critically involved with anti-adhesion cues associated with individual axonal growth during olfactory system development.  相似文献   

16.
SYNOPSIS. Severed distal stumps of nerve axons have now beenreported to survive for months to years in both vertebrate andinvertebrate nervous systems While low (>15°C) temperaturesmay increase survival times in some preparations such as unmyelinatedgarfish olfactory axons, temperature between 15 and 25°Cis not the only significant factor determining the time courseof survival in goldfish Mauthner axons and for many invertebrateaxons For example when different axons in a crayfish are allstudied at the same temperature, long term survival differsin different axons In some cases these differences appear tobe due to differences in the nature of the ghal reaction orthe presence of synaptic contacts. The possible cellular mechanisms for long term survival fallinto three general cate gories slow degradation of axonal proteinsde novo axoplasmic protein synthesis, and transfer of proteinsfrom adjacent cells to severed axonal stumps In crayfish andsquid giant axons, there is evidence that proteins are indeedtransferred intact from glia to axons or from axon to axon,possibly via exocytotic/endocytotic processes However cellularmechanisms for long term survival may well differ in differentaxons of the same organism, much less between axons in organismsfrom different phyla In particular the ghal sheaths of myehnatedvertebrate axons which demonstrate long term survival mightbe expected to impede ghal/axonal or axonal/axonal protein transfer. The study of long term survival of severed distal stumps isimportant for studies of axonal regeneration because axons inorganisms having long survival times often show functional reconnectionmuch more rapidly and with higher specificity than do axonsin organisms lacking long survival times The study of long termsurvival is also important to cell biologists for an understandingof the molecular mechanisms which allow a piece of cytoplasmseparated from direct cytoplasmic contact with any nucleus toremain morphologically intact and functionally competent formonths to years.  相似文献   

17.
Bülow HE  Boulin T  Hobert O 《Neuron》2004,42(3):367-374
Wiring of the nervous system requires that axons navigate to their targets and maintain their correct positions in axon fascicles after termination of axon outgrowth. We show here that the C. elegans fibroblast growth factor receptor (FGFR), EGL-15, affects both processes in fundamentally distinct manners. FGF-dependent activation of the EGL-15 tyrosine kinase and subsequently the GTPase LET-60/ras is required within epidermal cells, the substratum for most outgrowing axon, for appropriate outgrowth of specific axon classes to their target area. In contrast, genetic elimination of the FGFR isoform EGL-15(5A), defined by the inclusion of an alternative extracellular interimmunoglobulin domain, has no consequence for axon outgrowth but leads to a failure to postembryonically maintain axon position within defined axon fascicles. An engineered, secreted form of EGL-15(5A) containing only its ectodomain is sufficient for maintenance of axon position, thus providing novel insights into receptor tyrosine kinase function and the process of maintaining axon position.  相似文献   

18.
19.
Immunocytochemical and histochemical methods have been used to describe the neuronal population migrating from the rat olfactory placode and to analyze the spatio-temporal evolution of this neuronal migration during development. Several neuronal markers, such as binding to the lectin Ulex europaeus (UEA I) and the presence of neuron-specific enolase (NSE), olfactory marker protein (OMP), and luteinizing hormone-releasing hormone (LHRH), have been tested in order to determine whether migrating neurons originate from both the medial and the lateral parts of the placode and whether they all express LHRH. Our data show that a large population of differentiated migrating neurons can be identified with an antibody against NSE from the 14th day of gestation and with UEA I one day later. Migrating neurons are closely associated with both the vomeronasal axon fascicles emerging from the medial pit and the olfactory axons originating from the lateral pit. However, the neuron migration from the lateral pit appears to be more discrete than that from the medial pit. No LHRH immunoreactivity has been detected among neurons migrating from the lateral pit. Some neurons accompanying the olfactory axon fascicles exhibit a high level of maturation as shown by their OMP-positivity. Numerous neurons positive for both NSE and UEA I have also been observed within the presumptive olfactory nerve layer in early embryonic stages.  相似文献   

20.
The expression of the neural adhesion molecules L1 and N-CAM has been studied in the embryonic and early postnatal olfactory system of the mouse in order to gain insight into the function of these molecules during development of a neural structure which retains neuronal turnover capacities throughout adulthood. N-CAM was slightly expressed and L1 was not significantly expressed in the olfactory placode on Embryonic Day 9, the earliest stage tested. Rather, N-CAM was strongly expressed in the mesenchyme underlying the olfactory placode. In the developing nasal pit, L1 and N-CAM were detectable in the developing olfactory epithelium, but not in regions developing into the respiratory epithelium. At early developmental stages, expression of the so-called embryonic form of N-CAM (E-N-CAM) coincides with the expression of N-CAM, whereas at later developmental stages and in the adult it is restricted to a smaller number of sensory cell bodies and axons, suggesting that the less adhesive embryonic form is characteristic of morphogenetically dynamic neuronal structures. Moreover, E-N-CAM is highly expressed at contact sites between olfactory axons and their target cells in the glomeruli of the olfactory bulb. L1 and N-CAM 180, the component of N-CAM that accumulates at cell contacts by interaction with the cytoskeleton are detectable as early as the first axons extend toward the primordial olfactory bulb. L1 remains prominent throughout development on axonal processes, both at contacts with other axons and with ensheathing cells. Contrary to N-CAM 180 which remains detectable on differentiating sensory neuronal cell bodies, L1 is only transiently expressed on these and is no longer detectable on primary olfactory neuronal cell bodies in the adult. Furthermore, whereas throughout development L1 has a molecular form similar to that seen in other parts of the developing and adult central nervous systems, N-CAM and, in particular, N-CAM 180 retain their highly sialylated form at least partially throughout all ages studied. These observations suggest that E-N-CAM and N-CAM 180 are characteristic of developmentally active structures and L1 may not only be involved in neurite outgrowth, but also in stabilization of contacts among fasciculating axons and between axons and ensheathing cells, as it has previously been found in the developing peripheral nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号