首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two chitin synthases in Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
Disruption of the yeast CHS1 gene, which encodes trypsin-activable chitin synthase I, yielded strains that apparently lacked chitin synthase activity in vitro, yet contained normal levels of chitin (Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L., and Robbins, P. W. (1986) Cell 46, 213-225). It is shown here that disrupted (chs1 :: URA3) strains have a particulate chitin synthetic activity, chitin synthase II, and that wild type strains, in addition to chitin synthase I, have this second activity. Chitin synthase II is measured in wild type strains without preincubation with trypsin, the condition under which highest chitin synthase II activities are obtained in extracts from the chs1 :: URA3 strain. Chitin synthase II, like chitin synthase I, uses UDP-GlcNAc as substrate and synthesizes alkali-insoluble chitin (with a chain length of about 170 residues). The enzymes are equally sensitive to the competitive inhibitor Polyoxin D. The two chitin synthases are distinct in their pH and temperature optima, and in their responses to trypsin, digitonin, N-acetyl-D-glucosamine, and Co2+. In contrast to the report by Sburlati and Cabib (Sburlati, A., and Cabib, E. (1986) Fed. Proc. 45, 1909), chitin synthase II activity in vitro is usually lowered on treatment with trypsin, indicating that chitin synthase II is not activated by proteolysis. Chitin synthase II shows highest specific activities in extracts from logarithmically growing cultures, whereas chitin synthase I, whether from growing or stationary phase cultures, is only measurable after trypsin treatment, and levels of the zymogen do not change. Chitin synthase I is not required for alpha-mating pheromone-induced chitin synthesis in MATa cells, yet levels of chitin synthase I zymogen double in alpha factor-treated cultures. Specific chitin synthase II activities do not change in pheromone-treated cultures. It is proposed that of yeast's two chitin synthases, chitin synthase II is responsible for chitin synthesis in vivo, whereas nonessential chitin synthase I, detectable in vitro only after trypsin treatment, may not normally be active in vivo.  相似文献   

2.
Nikkomycin Z inhibits chitin synthase in vitro but does not exhibit antifungal activity against many pathogens. Assays of chitin synthase isozymes and growth assays with isozyme mutants were used to demonstrate that nikkomycin Z is a selective inhibitor of chitin synthase 3. The resistance of chitin synthase 2 to nikkomycin Z in vitro is likely responsible for the poor activity of this antibiotic against Saccharomyces cerevisiae.  相似文献   

3.
The chitin synthase of Saccharomyces is a plasma membrane-bound zymogen. Following proteolytic activation, the enzyme synthesizes insoluble chitin that has chain length and other physical properties similar to chitin found in bud scars. We isolated mutants lacking chitin synthase activity (chs1) and used these to clone CHS1. The gene has an open reading frame of 3400 bases and encodes a protein of 130 kd. The fission yeast S. pombe lacks chitin synthase and chitin. When a plasmid encoding a CHS1-lacZ fusion protein is introduced into S. pombe, both enzymatic activities are expressed in the same ratio as in S. cerevisiae, demonstrating that CHS1 encodes the structural gene of chitin synthase. Three CHS1 gene disruption experiments were performed. In all cases, strains with the disrupted gene have a recognizable phenotype, lack measurable chitin synthase activity in vitro but are viable, contain normal levels of chitin in vivo, and mate and sporulate efficiently.  相似文献   

4.
The previously described tryptophan synthase “inactivase II”, a proteolytic enzyme from yeast, exhibits high activity in the activation of chitin synthase. Tryptophan synthase inactivase I shows essentially no activity.The purified, heat-stable inhibitor of the tryptophan synthase inactivating enzymes also inhibits the activation of chitin synthase. We take these results to mean that the proteolytic inactivation of tryptophan synthase and the proteolytic activation of chitin synthase are catalyzed and regulated by the same protease/inhibitor system  相似文献   

5.
Chitin synthase converts uridine diphosphoryl-N-acetylglucosamine (UDP-GlcNAc) to chitin (poly-beta-(1-->4)-GlcNAc). During polymerization, elongation occurs at the 4-OH (nonreducing) terminus of the growing chitin chain. Blockage of the 4-OH via incorporation of UDP-N-acetyl-4-O-methylglucosamine (UDP-4-OMe-GlcNAc, 3) can potentially terminate chitin polymerization, and represents a novel strategy for chitin synthase inhibition. The chemical synthesis of 3 and preliminary evaluation of its possible incorporation by chitin synthase are reported herein.  相似文献   

6.
Chitin formation depends on the activity of a family II glycosyltransferase known as chitin synthase, whose biochemical and structural properties are largely unknown. Previously, we have demonstrated that the chitin portion of the peritrophic matrix in the midgut of the tobacco hornworm, Manduca sexta, is produced by chitin synthase 2 (CHS-2), one of two isoenzymes encoded by the Chs-1 and Chs-2 genes (also named Chs-A and Chs-B), and that CHS-2 is located at the apical tips of the brush border microvilli. Here we report the purification of the chitin synthase from the Manduca midgut as monitored by its activity and immuno-reactivity with antibodies to the chitin synthase. After gel permeation chromatography, the final step of the developed purification protocol, the active enzyme eluted in a fraction corresponding to a molecular mass between 440 and 670 kDa. Native PAGE revealed a single, immuno-reactive band of about 520 kDa, thrice the molecular mass of the chitin synthase monomer. SDS-PAGE and immunoblotting indicated finally that an active, oligomeric complex of the chitin synthase was purified. In summary, the chitin synthase from the midgut of Manduca may prove to be a good model for investigating the enzymes' mode of action.  相似文献   

7.
8.
The CAL1 gene was cloned by complementation of the defect in Calcofluor-resistant calR1 mutants of Saccharomyces cerevisiae. Transformation of the mutants with a plasmid carrying the appropriate insert restored Calcofluor sensitivity, wild-type chitin levels and normal spore maturation. Southern blots using the DNA fragment as a probe showed hybridization to a single locus. Allelic tests indicated that the cloned gene corresponded to the calR1 locus. The DNA insert contains a single open-reading frame encoding a protein of 1,099 amino acids with a molecular mass of 124 kD. The predicted amino acid sequence shows several regions of homology with those of chitin synthases 1 and 2 from S. cerevisiae and chitin synthase 1 from Candida albicans. calR1 mutants have been found to be defective in chitin synthase 3, a trypsin-independent synthase. Transformation of the mutants with a plasmid carrying CAL1 restored chitin synthase 3 activity; however, overexpression of the enzyme was not achieved even with a high copy number plasmid. Since Calcofluor-resistance mutations different from calR1 also result in reduced levels of chitin synthase 3, it is postulated that the products of some of these CAL genes may be limiting for expression of the enzymatic activity. Disruption of the CAL1 gene was not lethal, indicating that chitin synthase 3 is not an essential enzyme for S. cerevisiae.  相似文献   

9.
Chitosan, a derivative of chitin, is a natural component of some fungus cell walls. It is formed by the complex action of chitin synthase and chitin deacetylase. The in vitro activity of these two enzymes is known to be influenced by several factors. We investigated the influence of ferrous ions, manganese ions, cobalt ions, trypsin, and chitin, as individual supplements to the nutrient medium, on the in vivo activity of chitin synthase and chitin deacetylase to form chitosan in the fungus Absidia orchidis. Manganese and ferrous ions gave the most significant results. These ions increase chitosan yields through an increase in biomass production rather than an increase of chitosan content in cell walls. Manganese and ferrous ions lowered the activity of chitin deacetylase; however, their influence on the activity of chitin synthase was more complex. The effects of trypsin and chitin on biomass and cell wall chitosan content were negligible, while cobalt ions completely inhibited the growth of fungi.  相似文献   

10.
Growth of three different anaerobic rumen fungi Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis was assessed in vitro at regular intervals by measurements of protein and chitin content and of chitin synthase activity of the cell free extracts. Similar trends and a comparable amount of protein and chitin were observed in the three species. However, chitin synthase activity was higher in S. communis and contrary to the activity of the other two strains did not decrease after maximum enzyme activity was reached. There were positive correlations between chitin content, protein content and chitin synthase activity during the active growth phase of the fungi indicating that they could be confidently used to determine in vitro growth phase and biomass concentration.  相似文献   

11.
The biosynthesis of chitin has been obtained in broken mycelia and protoplasts of the fungus Aspergillus fumigatus. The specific activity of chitin synthase (EC 2.4.1.16) in a membrane preparation from protoplasts derived from the hyphal tips of A. fumigatus was 26.8-fold greater than that of the chitin synthase in broken mycelia, indicating that the active chitin synthase is located primarily in a membrane-bound site at the hyphal tip. Polyoxin D was a potent competitive inhibitor of the enzyme, having Ki 5.2 +/- 0.8 micron with respect to the natural substrate UDP-N-acetyl-D-glucosamine, which has Km 1.58 mM.  相似文献   

12.
In Saccharomyces cerevisiae, chitin forms the primary division septum and the bud scar in the walls of vegetative cells. Three chitin synthetic activities have been detected. Two of them, chitin synthase I and chitin synthase II, are not required for synthesis of most of the chitin present in vivo. Using a novel screen, I have identified three mutations, designated csd2, csd3, and csd4, that reduce levels of chitin in vivo by as much as 10-fold without causing any obvious perturbation of cell division. The csd2 and csd4 mutants lack chitin synthase III activity in vitro, while csd3 mutants have wild-type levels of this enzyme. In certain genetic backgrounds, these mutations cause temperature-sensitive growth on rich medium; inclusion of salts or sorbitol bypasses this phenotype. Gene disruption experiments show that CSD2 is nonessential; a small amount of chitin, about 5% of the wild-type level, is detected in the disruptants. DNA sequencing indicates that the CSD2 protein has limited, but statistically significant, similarity to chitin synthase I and chitin synthase II. Other significant similarities are to two developmental proteins: the nodC protein from Rhizobium species and the DG42 protein of Xenopus laevis. The relationship between the nodC and CSD2 proteins suggests that nodC may encode an N-acetylglucosaminyltransferase that synthesizes the oligosaccharide backbone of the nodulation factor NodRm-1.  相似文献   

13.
14.
Gut chitin synthase was characterized and the sterols and ecdysteroids in the sugarcane rootstalk borer weevil, Diaprepes abbreviatus, were identified. An in vitro cell-free chitin synthase assay was developed using larval gut tissues from D. abbreviatus. Subcellular fractionation experiments showed that the majority of chitin synthase activity was located in 10,000g pellets. The gut chitin synthase requires Mg2+ to be fully active: 7–8-fold increases in activity were obtained with 10 mM Mg2+ present in reaction mixture. Calcium also stimulated activity (4–5-fold with 10 mM Ca2+), while Cu+2 completely inhibited at 1 mM. Other monovalent and divalent cations had little or no effect on activity. The pH and temperature optima were 7 and 25°C, respectively. Gut chitin synthesis was activated ca. 50% by trypsin treatments. GlcNAc stimulated chitin synthase activity, but Glc, GlcN and glycerin did not. Polyoxin D, UDP, and ADP inhibited the chitin synthase reaction with I50's of 75 μM, 2.3 mM, and 3.6 mM, respectively. Nikkomycin Z was a potent inhibitor of chitin synthase (91% inhibition at 10 μM). Tunicamycin and diflubenzuron had no effect on the enzyme. The apparent Km and Vmax for the gut chitin synthase were, respectively, 122.5 ± 7.4 μM and 426 ± 19.7 pmol/h/mg protein utilizing UDP-GlcNAc as the substrate. Sterol analyses indicated that cholesterol was the major dietary and larval sterol. HPLC/RIA data indicated that 20-hydroxyecdysone was the major molting hormone.  相似文献   

15.
冯贻安  崔志峰 《微生物学报》2008,35(2):0267-0271
真菌细胞壁几丁质的合成是一个复杂的过程, 其关键酶为几丁质合酶(CS)。近年来, 丝状真菌中的CS研究有了大的突破, 与酿酒酵母中只有3种CS不同, 丝状真菌中存在7种类别的CS。大部分临床和农业中重要的病原真菌都是丝状真菌, 文中对真菌中7种类别CS的结构和功能作了概述, 重点讨论了丝状真菌中重要的CS类别, 并介绍了CS作为抗真菌药物有效靶标的研究现状, 旨在为研究真菌CS及其抑制剂提供参考。  相似文献   

16.
In silico analysis of the genome sequence of the human pathogenic fungus Candida albicans identified an open reading frame encoding a putative fourth member of the chitin synthase gene family. This gene, named CaCHS8, encodes an 1105 amino acid open reading frame with the conserved motifs characteristic of class I zymogenic chitin synthases with closest sequence similarity to the non-essential C. albicans class I CHS2 gene. Although the CaCHS8 gene was expressed in both yeast and hyphal cells, homozygous chs8 Delta null mutants had normal growth rates, cellular morphologies and chitin contents. The null mutant strains had a 25% reduction in chitin synthase activity and were hypersensitive to Calcofluor White. A chs2 Delta chs8 Delta double mutant had less than 3% of normal chitin synthase activity and had increased wall glucan and decreased mannan but was unaffected in growth or cell morphology. The C. albicans class I double mutant did not exhibit a bud-lysis phenotype as found in the class I chs1 Delta mutant of Saccharomyces cerevisiae. Therefore, C. albicans has four chitin synthases with two non-essential class I Chs isoenzymes that contribute collectively to more than 97% of the in vitro chitin synthase activity.  相似文献   

17.
真菌几丁质合酶的研究进展   总被引:1,自引:0,他引:1  
真菌细胞壁几丁质的合成是一个复杂的过程,其关键酶为几丁质合酶(CS).近年来,丝状真菌中的CS研究有了大的突破,与酿酒酵母中只有3种CS不同,丝状真菌中存在7种类别的CS.大部分临床和农业中重要的病原真菌都是丝状真菌,文中对真菌中7种类别CS的结构和功能作了概述,重点讨论了丝状真菌中重要的CS类别,并介绍了CS作为抗真菌药物有效靶标的研究现状,旨在为研究真菌CS及其抑制剂提供参考.  相似文献   

18.
19.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号