首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The concentration of a hydroxamic acid, also known as DIMBOA (2,4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one), in 6-d old wheat seedlings was examined using reverse-phase high performance liquid chromatography (HPLC). Wheat plant introduction (PI) lines PI 137739 (Dn1 gene), PI 262660 (Dn2 gene), and PI 294994 (Dn5 gene), the corresponding near-isogenic lines`Betta'-Dn1, Betta-Dn2 and Betta-Dn5, and susceptible Betta wheat were used in the study. The Dn2 gene conferring Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), tolerance was not related to DIMBOA concentration in wheat. Of the lines with Dn1 and Dn5 genes that confer antibiosis to D. noxia, only lines with the Dn5 gene showed increased DIMBOA accumulation. However, the Dn5 and the DIMBOA biosynthesis genes are not located in the same chromosome group. Possible relationship between the Dn5 gene and DIMBOA accumulation was discussed. This study indicates that DIMBOA concentration does not completely explain D. noxia resistance in the wheat lines examined and a comprehensive examination of other allelochemicals (e.g., phenolics) is necessary.  相似文献   

2.
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid (Hx) occurring in wheat, was shown to deter feeding by the aphid Rhopalosiphum padi (L.), and to reduce BYDV transmission to the plant. Dual choice tests with wheat leaves showed the preferential settlement of aphids on leaves with lower levels of DIMBOA. Electric monitoring of aphid feeding behaviour showed that in seedlings with higher DIMBOA levels fewer aphids reached the phloem and they needed longer times to contact a phloem vessel than in those with lower levels. When aphids carrying BYDV were allowed to feed on wheat cultivars with different DIMBOA levels, fewer plants were infected with BYDV in the higher DIMBOA cultivars than in the lower ones. Preliminary field experiments showed a tendency for wheat cultivars with higher Hx levels to be more tolerant to infection by BYDV than lower Hx level ones.  相似文献   

3.
Activities of the detoxification enzymes esterase, glutathione S‐transferase, and of superoxide dismutase in aphids and aphid‐infested cereal leaves were assayed using polyacrylamide gel electrophoresis and a spectrophotometer to elucidate the enzymatic mechanisms of aphid resistance in cereal plants. A chlorosis‐eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and non‐chlorosis‐eliciting bird cherry‐oat aphid, Rhopalosiphum padi (L.), and four cereals were used in this study. The four cereal genotypes were ‘Arapahoe’ (susceptible) and ‘Halt’ (resistant) wheat (Triticum aestivum L.), ‘Morex’ (susceptible) barley (Hordeum vulgare L.), and ‘Border’ (resistant) oat (Avena sativa L.). Esterase isozymes differed between the two aphid species, although glutathione S‐transferase and superoxide dismutase did not. Esterase, glutathione S‐transferase, and superoxide dismutase activities in either aphid species were not affected by the level of resistance of a cereal to D. noxia. The assays of cereal leaf samples showed that D. noxia feeding elicited an increase in esterase activity in all four cereal genotypes, although R. padi feeding did not. The increase of esterase activity in cereals, however, was not correlated to aphid resistance in the cereals. The time‐series assays of aphid‐infested cereal leaves showed that D. noxia‐infested Morex barley had a significant increase in esterase activity on all sampling dates (3, 6, and 9 days) in comparison with either uninfested or R. padi‐infested barley. No difference in glutathione S‐transferase activity was detected among either aphid infestations or sampling dates. The electrophoretic assays, however, revealed that aphid feeding elicited a significant increase in superoxide dismutase activity, which served as the control of glutathione S‐transferase activity assays. The increase in esterase and superoxide dismutase activities suggested that D. noxia feeding imposes not only toxic, but also oxidative stresses on the cereals. The ramification of using these enzyme activity data to understand the etiology of D. noxia‐elicited chlorosis is discussed.  相似文献   

4.
The species composition, relativeabundance, and seasonal dynamics of selectednatural enemies of cereal aphids were monitoredin spring wheat fields in Moscow, Idaho in 1997and 1998. Trials also examined the potentialimpact of resistance to Russian wheat aphid(RWA), Diuraphis noxia (Mordvilko)(Homoptera: Aphididae) in wheat, on aphidbiological control agents. Natural enemypopulations were monitored on two springwheats: D. noxia susceptible variety`Centennial' and resistant genotype `IDO488'. Field plots were artificially infested withadult D. noxia, and sampled for cerealaphids and parasitoids weekly. Coccinellidpredators were monitored once in 1997 and twicein 1998. The coccinellids Hippodamiaconvergens Guerin, Coccinellaseptempunctata L., C. transversoguttataBrown and C. trifasciata Mulsant weredetected. No significant differences in adultor immature coccinellid densities were observedbetween the D. noxia resistant andsusceptible genotypes. During both years, themost abundant primary hymenopteran parasitoidswere Diaeretiella rapae (M'Intosh), Aphidius ervi Haliday, A. avenaphis(Fitch), and Lysiphlebus testaceipes(Cresson), Aphelinus varipes (Foerster),Aphidius colemani Viereck, Aphidiuspicipes (Nees), Aphidius sp., Monoctonus washingtonensis Pike & Stary, Praon gallicum Stary, Praon occidentaleBaker, and Praon sp. were also detected. Numbers of both D. noxia and D.rapae were significantly greater on Centennialthan on IDO488 in both years. When all speciesof cereal aphids and parasitoids areconsidered, the total percentage parasitism wasnot significantly different between thegenotypes. There was no interaction betweenD. noxia resistance and the populationdensity of the predators or parasitoidsmonitored. These results suggest that the D. noxia resistant line had no adverse impacton natural enemies under the conditions ofthese field experiments.  相似文献   

5.
The concentration of photosynthetic pigments (i.e., chlorophylls a and b, and carotenoids) and chlorophyll degradation enzyme (i.e., chlorophyllase, oxidative bleaching, and Mg-dechelatase) activities on aphid-damaged and non-damaged regions of the infested leaves were determined with two infestation periods (6 and 12 days). Russian wheat aphid [Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae)] feeding caused significant losses of chlorophylls a and b and carotenoids in the damaged regions. However, bird cherry-oat aphid [Rhopalosiphum padi (L.) (Hemiptera: Aphididae)] feeding did not, except a significantly lower level of carotenoids was observed in the damaged regions from the short-infestation (6-day) samples. Interestingly, the non-damaged regions of D. noxia-infested leaves on both sampling dates had a significant increase of chlorophylls a and b and carotenoid concentrations when compared with the uninfested leaves. Although D. noxia feeding did not cause any changes in either chlorophyll a/b or chlorophyll (a+b)/carotenoid ratio between the damaged and non-damaged leaf regions on short-infestation (6-day) samples, a significantly lower chlorophyll a/b ratio was detected in long-infestation (12-day) samples. The assays of chlorophyllase and oxidative bleaching activities showed no significant differences between the damaged and non-damaged regions of the infested leaves on either sampling date. Mg-dechelatase activity, however, was significantly higher in D. noxia-damaged than non-damaged leaf regions from the short-infestation samples, while no differences were detected from the long-infestation samples. Furthermore, the long-infestation samples showed that Mg-dechelatase activity from both D. noxia-damaged and non-damaged regions increased significantly in comparison with the respective regions of either uninfested or R. padi-infested leaves. We infer that non-damaged regions of D. noxia-infested leaves compensate for the pigment losses in the damaged regions, and that Mg-dechelatase activity changed dynamically from a localized response to a systemic response as infestation duration extends. The findings from this study on cereal aphid-elicited chlorosis (or desistance) would help us to elucidate plant resistance mechanisms, in particular plant tolerance to non-defoliating herbivory.  相似文献   

6.
The Russian wheat aphid Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) is a global pest of wheat and barley. This arthropod is difficult to manage with pesticides or biological control agents due to the aphid’s ability to seek shelter in rolled leaves and also to develop virulent biotypes. During the past 20 years, the use of aphid-resistant cereal cultivars has proven to be an economically and ecologically beneficial method of protecting crops from D. noxia damage. Our research reports the results of experiments to determine the categories of D. noxia biotype 2 resistance present in Cereal Introduction Triticeae (CItr) 2401, and a barley genotype (IBRWAGP4-7), compared to control resistant and susceptible wheat and barley genotypes. CItr2401 and IBRWAGP4-7 exhibit no antixenosis, but both genotypes demonstrated antibiosis to D. noxia in the form of reduced aphid populations. Reduced leaf dry weight change, a measure of plant tolerance of D. noxia feeding, was significantly less in CItr2401 and IBRWAGP4-7 plants than in plants of susceptible control varieties. However, tolerance was negated when a tolerance index was calculated to correct for differences in aphid populations. Barley IBRWAGP4-7 is a new source of D. noxia biotype 2 resistance. D. noxia foliar leaf damage and population growth were significantly less on IBRWAGP4-7 plants than on plants of the susceptible barley variety Morex. IBRWAGP4-7 plants were equal in resistance to plants of the resistant barley STARS 9301 and wheat genotype CItr2401. Handling editor: Heikki Hokkanen  相似文献   

7.
Chlorophyll degradation is a complex phenomenon that often accompanies insect feeding damage to plants. Loss of chlorophyll can be initiated by several reactions, including oxidative bleaching, chlorophyllase activity, and Mg-dechelatase activity. Extracts from the Russian wheat aphid [Diuraphis noxia (Mordvilko)], the bird cherry-oat aphid [Rhopalosiphum padi (L.)], and aphid-infested and uninfested wheat plants were assayed in vitro for activities involved in chlorophyll degradation. Although the initial infestation was the same (10 apterous adults) for both aphid species, D. noxia weight was significantly higher than R. padi after feeding for 12 days. Consequently, D. noxia feeding caused greater fresh leaf weight reduction than R. padi feeding. Chlorophyll degradation assays showed no activity from either D. noxia or R. padi extracts. Plant extract assays showed a significant difference in Mg-dechelatase activity, while no difference was detected in either the chlorophyllase or oxidative bleaching pathways among the aphid-infested or uninfested plant extracts. Diuraphis noxia-infested leaf extracts showed a greater increase of Mg-dechelatase activity than either R. padi-infested or the uninfested plants. The findings suggest that leaf chlorosis elicited by D. noxia feeding is different from the chlorophyll degradation that occurs in natural plant senescence. Aphid-elicited chlorosis might be the result of a Mg-dechelatase-driven catabolism of chlorophyll in challenged wheat seedlings, however, the factor(s) from D. noxia that elicited the increase of Mg-dechelatase activity still remain to be determined.  相似文献   

8.
Knowledge of the physiological responses of barley, Hordeum vulgare L., to the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) is critical to understanding the defense response of barley to aphid injury and identifying resistance mechanisms. This study documented the impact of D. noxia feeding on resistant (‘Sidney’) and susceptible (‘Otis’) barley through chlorophyll fluorescence measurements, chlorophyll content, and carbon assimilation (A–Ci) curves recorded at 1, 3, 6, 10, and 13 days after aphid introduction. All chlorophyll fluorescence parameters evaluated were similar between aphid-infested and control plants for both cultivars. A–Ci curves showed that D. noxia feeding negatively impacts the photosynthetic capacity in both cultivars, but this effect was greater in the susceptible plants. From the A–Ci curves, it is apparent that compensation occurs in resistant barley by day 10, but by the conclusion of the experiment, aphid populations reached levels that overwhelmed the resistant barley seedlings. Differences observed in carbon assimilation curves between control and infested plants show that D. noxia feeding impacts the dark reaction, specifically rubisco activity and RuBP regeneration. It is likely that declines in the photochemical efficiency and chlorophyll content of the plants may be a secondary effect and not the primary trigger of declines in host plant function.  相似文献   

9.
The potential for exploiting natural wheat resistance to control the cereal aphid Rhopalosiphum padi, the most important aphid pest of small grain cereals in the UK, was investigated as an alternative approach to the use of insecticides. The investigation focussed on a group of secondary metabolites, the hydroxamic acids or benzoxazinones, present naturally as glucosides, but which hydrolyse on tissue damage to give biologically active aglycones, e.g. 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) which are associated with natural plant defence. These can be important for resistance against insects, fungi, bacteria and nematodes for a range of cultivated monocotyledonous plants and could ultimately be combined with other defence mechanisms to provide a general approach to cereal aphid control. Levels of hydroxamic acids, particularly DIMBOA‐glucoside, were determined in hexaploid (Triticum aestivum) and tetraploid (Triticum durum) wheat varieties and differences were found between species and varieties. The effect of feeding by R. padi on the level of hydroxamic acids in the leaf tissue was also investigated. Thus, after 24 h of aphid feeding, as an apparently localised hydrolytic defence reaction in the leaf, levels of DIMBOA‐glucoside decreased noticeably. When aphids were fed on sucrose solution containing low doses of DIMBOA there was a significant mortality compared to the sucrose control. However, the levels of and variation in hydroxamic acids in the wheat varieties investigated were insufficient for significant differences in aphid behaviour and development.  相似文献   

10.
11.
Surveys were conducted in the summer andwinter rainfall wheat producing regions of SouthAfrica in a first attempt to investigate theidentity and impact of entomopathogenic fungi withinthe cereal aphid complex. Wheat produced underdryland and irrigated conditions was surveyed duringthe 1996 and 1997 seasons. Six cereal aphid specieswere recorded of which the Russian wheat aphid, Diuraphis noxia, was the most abundantunder dryland conditions in the summer rainfallregion as opposed to the oat aphid, Rhopalosiphum padi, in the winter rainfallregion. Rose grain aphid, Metopolophiumdirhodum, was most prevalent underirrigated conditions in the summer rainfall region.Five species of entomopathogenic fungi were recordedincluding four entomophthorales and the hyphomycete,Beauveria bassiana. TheEntomophthorales included Pandora neoaphidis, Conidiobolus obscurus, C.thromboides, and Entomophthoraplanchoniana. Pandora neoaphidis wasthe most important etiological agent recorded fromD. noxia, with up to 50% mycosis recordedunder dryland conditions in the Bethlehem summerrainfall region. Similarly, P. neoaphidis wasthe most prevalent species within populations ofM. dirhodum. under irrigated conditions in theBergville/Winterton summer rainfall region (up to77% mycosis). However, mycoses of R. padi didnot exceed 1.7% in samples from these areas,suggesting that R. padi may be lesssusceptible to P. neoaphidis than M.dirhodum. Epizootics in populations of D.noxia under dryland conditions in both the winterand summer rainfall regions indicated a high levelof susceptibility to P. neoaphidis.Occurrences of hymenopterous parasitoids andpredators in populations of D. noxia were low,although a parasitism level of 25% was recorded inone small sample of R. padi collected from anirrigated field in the summer rainfall region.  相似文献   

12.
13.
The tomato Mi gene confers resistance to nematodes, Meloidogyne spp., and to the potato aphid, Macrosiphum euphorbiae (Thomas). Previous greenhouse choice assays with Bemisia tabaci (Gennadius) showed that tomato commercial varieties carrying this gene had significantly lower values of host suitability and whitefly reproduction than varieties lacking Mi. This indicated that Mi, or another gene in its region, could regulate partial resistance. In order to characterise this resistance, probing and feeding behaviour of Bemisia tabaci B-biotype was studied with DC Electrical Penetration Graph (EPG) technique on the near-isogenic tomato lines Moneymaker (without Mi) and Motelle (carrying Mi). Significant differences (P < 0.05) between tomato lines were found in EPG parameters related to epidermis and/or mesophyll tissues. On Motelle, a lower percentage of whiteflies achieved phloem phase and they made more probes before attaining first phloem phase, had a higher ratio (number of probes before first phloem phase)/(total number of probes), had a longer total duration of non-probing time, and a longer time before making the first intracellular puncture and before making the first phloem phase. In contrast, most of the parameters related to phloem phase were found not to differ significantly between these near-isogenic lines. The behavioural data strongly suggest that the partial resistance in the variety Motelle is due to factors in the epidermis and/or mesophyll that inhibit the whiteflies from reaching phloem sieve elements. However, once the stylets reach a sieve element, whitefly behaviour did not differ between the two varieties. Thus, phloem sap of the two varieties appears to be equally acceptable to the whiteflies. Further studies are necessary to provide a better understanding of these mechanisms of resistance to whiteflies in tomatoes.  相似文献   

14.
Effective pest management is greatly facilitated by knowledge of the genetic structure and host adaptation of the pest species in question. The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae: Macrosiphini), is an important economic pest in many cereal‐growing areas of the world, and in this study we investigated these aspects of its populations, using microsatellite markers and host plant response assays. Diuraphis noxia was sampled from 38 locations in Iran and genotyped at four polymorphic microsatellite loci that had been isolated from various Sitobion species. We identified 50 multilocus genotypes in 376 individuals. The overall observed heterozygosity was 0.134. F‐statistics showed a regional partitioning in D. noxia populations with overall FST = 0.231. In addition, there was a significant correlation between genetic and geographic distances. In order to test for the ecological consequences of genetic variability in D. noxia, biotypic variation amongst the isolates collected from wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) was evaluated on a number of resistant and susceptible wheat varieties. The plant variables we measured were damage rating (based on leaf chlorosis, leaf rolling, wilting, and death of the host plant), host plant dry weight, and root length. Damage rating was the best criterion for detecting biotypic variation in D. noxia. Discriminant analysis correctly classified the isolates in respective groups in 80–91.8% of the cases. The barley isolate showed no differences in performance on resistant and susceptible wheat, indicating a lack of gene‐by‐gene relationship with wheat plants. In contrast, wheat isolates differentially damaged the resistant and susceptible plants and showed moderate to severe virulence.  相似文献   

15.
We investigated the comparative effects of the feeding damage caused by two Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov) biotypes, RWASA1 and RWASA2, on leaves of three RWA-resistant barley (Hordeum vulgare L.) lines from the USDA-ARS, and used a South African non-resistant cultivar as control. The relationship between aphid breeding capacity and the structural damage inflicted by the aphids was studied, using wide-field fluorescence and transmission electron microscopy (TEM). Colonies of the two biotypes grew rapidly on all four barley lines during a 10 day feeding exposure but as expected, population size and density were generally lower on the resistant lines than on the non-resistant cultivar. The new South African biotype, RWASA2, bred significantly faster than the original RWASA1 biotype. The feeding and water uptake-related damage sustained by phloem and xylem tissues of the resistant lines suggest that RWASA2 was a more aggressive feeder and caused substantially more cell damage than RWASA1. Examination of wound callose distribution after aphid feeding revealed that high levels of wound callose occurred in non-resistant and in resistant lines. Reduction in aphid population size, as well as ultrastructural damage during feeding by RWA biotypes on resistant lines, signals potential antibiotic and tolerant responses of the barley lines to aphid feeding. We infer from callose distribution and ultrastructural studies, that phloem transport would be substantially reduced in the non-resistant PUMA and to a lesser extent in the resistant STARS lines, which suggests that the STARS lines may be a potential source of RWASA1 and RWASA2-resistance.  相似文献   

16.
The feeding behavior of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) was examined on seedlings of narrow leafed lupin, Lupinus angustifolius L., and yellow lupin, L. luteus L., using electronic monitoring of insect feeding behavior (EMIF). Aphid feeding behavior was first compared between resistant (cv. Kalya) and susceptible (cv. Tallerack) varieties of narrow-leafed lupin. Aphids spent significantly more time in non- penetration and stylet pathway activities, and significantly less time in the sieve element phase on Kalya than on Tallerack, suggesting that feeding deterrence is an important component of aphid resistance in Kalya. Aphid feeding on a susceptible yellow lupin variety (cv. Wodjil) was then compared with that on two resistant lines, one (Teo) with high and the other (94D024-1) with low seed alkaloid content. There were no consistent differences in aphid feeding behavior between Wodjil and Teo. Total, mean and percentage sieve element phase times were significantly lower, and total and percentage times in non-phloem phase were greater on 94D024-1 than on Wodjil, suggesting the possibility of phloem-based deterrence in 94D024-1.  相似文献   

17.
Shifts in prevalence and abundance of hymenopteran parasitoids and dipteran predators, Diuraphis noxia, and other aphids were measured in the west-central Great Plains of North America, April–September, in 2001 and 2002, corresponding to over a decade after first detection of D. noxia and first release of D. noxia enemies. Significant temporal shifts in enemy species prevalence and diversity were detected in this study and more broadly during an 11 year time span. At any given time, some species were relatively common. One parasitoid had been predominant throughout (Aphelinus albipodus), two had shifted in dominance (Lysiphlebus testaceipes and Diaeretiella rapae), three parasitoids had been detected infrequently (Aphidius avenaphis, Aphidius matricariae, and Aphelinus asychis), one parasitoid was detected in the 1990s but not during 2001 and 2002 (Aphelinus varipes), two predatory flies occurred at occasional significant levels (Leucopis gaimarii and Eupeodes volucris), and two parasitoids may have been minor members of the fauna (Aphidius ervi and Praon yakimanum). Aphid populations detected were usually very low or not detected, precluding estimation of percent parasitism. The best evidence of suppression was observations of parasitoids in the rare case of D. noxia exceeding economic thresholds, which complemented past studies using high aphid densities. The D. noxia enemies detected were primarily endemic or long-time residents derived from previous introductions. This enemy community may provide flexibility in responding to a future aphid invasion, allowing more strategic use of biological control and other pest management approaches.  相似文献   

18.
19.
A Hordeum bulbosum L. (Poaceae) clone A17 was identified, which showed complete resistance to Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). It was not possible to infect plants of A17 with BYDV‐PAV, ‐MAV, or with CYDV‐RPV by the aphid vectors Rhopalosiphum padi (L.) or Sitobion avenae (Fabricius) (both Hemiptera: Aphididae). Plants of the A17 clone and of the BYDV‐susceptible H. bulbosum clone A21 revealed some resistance to R. padi compared to the susceptible winter barley cultivar Rubina [Hordeum vulgare L. (Poaceae)]. The development time to the imago was longer and the number of nymphs was reduced on both clones compared with cv. Rubina. The probing and feeding behaviour of R. padi on plants of the H. bulbosum clones was studied over 12 h and compared with that on plants of the barley cv. Rubina. Principal component analysis of the results of the feeding behaviour revealed a clear separation of the H. bulbosum genotypes from Rubina. On H. bulbosum the number of penetrations was higher but total feeding time was shorter. Significant differences were mainly found in the phloem feeding parameters for plants of both clones in comparison to Rubina, with the virus resistant A17 clone having the strongest effect and the susceptible A21 clone being intermediate. Most significant differences were found in parameters of the phloem salivation phase. On A17, an average of less than one (0.9) E1 phase per plant was observed (3.3 on A21 and 5.7 on Rubina) and its duration was reduced to less than 1 min (0.9 min) in comparison to 2.4 min on A21 and 5.7 min on Rubina. Also, the phloem feeding (E2) phase was clearly reduced on A17 plants with 0.5 E2 phases per test and a mean duration of 1.1 min in contrast with 2.9 and 3.5 E2 phases per test and 34.1 and 421.3 min for A21 and Rubina, respectively. These results point towards a phloem‐localized factor for aphid resistance in H. bulbosum, i.e., on A17 plants the phloem salivation time is too short for a successful infection by BYDV leading to vector resistance.  相似文献   

20.
Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号