首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
李新宇  任新在 《兽类学报》2002,22(3):225-227
Amur goral(Nemorhaedus caudatus)is a rare species among Asian mammals. It is listed as Vulnerable in the 1996 IUCN Red List of the Threatened Animals[1], and designated as the natural monument (No. 217) in Republic of Korea[2]. This species is distributed in Northeast and Southwest of China, south of the Russian Far East and the Korean peninsula[3-5].But subspecies are different with inhabitants in China, which occur 5 species of gorals[4].  相似文献   

2.
Fang CM  Xu YH 《Cell research》2001,11(3):223-229
INTRODUCTIONCell polarity is the reflection of complex mechanisms that establish and maintain the functionally specialized regions in the plasma membrane and cytoplasm, and is fundamentally important for differentiation, proliferation, morphogenesis and other functions of simple and complicated organisms[1].Molecular mechanisms of cell polarity during animal development have been analyzed mainly in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster[2]. In early …  相似文献   

3.
Viruses are agents of some of the most destruc- tive diseases afflicting plants and animals[1]. Viruses also play a central role in experimental methods of molecular and cellular biology, especially in modern genetic engineering[1]. Raman spectroscopy is a pow-erful tool for studying the structure of the whole virion. A number of researches are limited to the conforma-tion of viruses, involving only nucleic acid (RNA or DNA) and its coat protein[1]. Literatures can be found concerning Raman…  相似文献   

4.
5.
The hrp (hypersensitive response and patho-genicity) gene clusters in Gram-negative phytopatho-genic bacteria determine hypersensitive response (HR) in non-host plants and pathogenicity in host plants of the bacteria[1—3]. An hrp gene cluster usually contains genes coding for the components of the type Ⅲ se-cretion pathway, effectors and the proteins that regu-late the productions and transportations of effectors[4]. Many effectors such as Harpins and Avr proteins are believed secreted by …  相似文献   

6.
1 Introduction Biomimetics or bionics is having an increasing role in innovation[1]. It offers the promise of novel routes to technological innovation; a recent paper highlighted the potential of studies of biological systems to initiate patents in the engineering sciences and technology[2]. Media coverage, particularly in business periodicals is increasing, for example, The Economist recently re- ported on the growth of biomimetics and its impact on technology[3]. There are two principal rou…  相似文献   

7.
Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under dif-ferent burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular poly-saccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of pho-tosystem II (PS II) after rehydration.  相似文献   

8.
Autophagy as a novel therapeutic target can inhibit or increase treatment efficacy in various types of breast cancer in a cell-type-dependent manner [1,2].Several studies have revealed that the coordination between Akt and the glycolytic pathway plays an indispensable role in mediating autophagy and caspase-dependent apoptosis,suggesting that a new regulatory mechanism for the process [3,4].Protein arginine N-methyltransferases(PRMTs)are eukaryotic enzymes that catalyze the transfer of methyl groups from S-adenosylmethionine to arginine residues of numerous PRMT substrates [5,6].PRMT2(also known as HRMT1L1)belongs to the arginine methyltransferase family [7].PRMT2β is a novel PRMT2 splice variant isolated from breast cancer cell [8].It occurs at the 3′ end of the PRMT2,resulting in loss of exons 7–9 and downstream frame-shifting [9].PRMT2β possesses 83 new amino acids at the C-terminus and its size is 301 amino acids.Our previous study reported that PRMT2β has potential antitumor effect by suppressing cyclin D1 expression [10].However,little is known about whether PRMT2β could regulate autophagy and glycolysis of MCF-7 cells.  相似文献   

9.
10.
Temperature is one of the main environmental factors affecting the formation and function of the photosynthetic apparatus[1]. It also affects the distribu-tion of plant species, genotypes and yield due to thedifferences of their thermostability. Moderately ele-vated temperature in the range of 32—38℃ fre-quently occurs in the field in summer[2]. In recent years, global change of the climate has led to a re-markable elevation of temperature, which reached up to 42℃ in some area last year. In…  相似文献   

11.
Abstract Malate dehydrogenase has been reported to be active as a Krebs cycle enzyme in Anabaena cylindrica and Anacystis nidulans [1,2] and as an enzyme of the glycollate pathway in Anabaena cylindrica [1,3]. This enzyme was also reported in Oscillatoria spp. [4] and in Nostoc muscorum [5]. The isoenzyme of eukaryotic organisms was known to participate in various metabolic pathways and to be localized in different subcellular organelles [6–9]. Kovatcheva and Bergman [5] have purified the enzyme from the reddish-brown 20 000 × g × 20 min supernatant. We have determined the intracellular distribution of malate dehydrogenese of Anacystis nidulans and present evidence that it is largely associated with the thylakoids. The significance of this study is discussed in terms of the dual role of cyanobacterial thylakoids in photosynthesis and respiration.  相似文献   

12.
Cyt c550 and 12 kDa protein are two extrinsic proteins of photosystem II (PSII) found in cyanobacteria and some eukaryotic algae. The binding patterns of these two extrinsic proteins are different between cyanobacterial (Thermosynechococcus vulcanus) and red algal (Cyanidium caldarium) PSIIs [Shen and Inoue (1993) Biochemistry 32: 1825; Enami et al. (1998) Biochemistry 39: 2787]. In order to elucidate the possible causes responsible for these differences, we first cloned the psbV gene encoding Cyt c550 from a red alga, Cyanidium caldarium, which was compared with the homologous sequences from other organisms. Cross-reconstitution experiments were then performed with different combinations of the extrinsic proteins and the cyanobacterial or red algal PSII. (1). Both the cyanobacterial and red algal Cyt c550 bound directly to the cyanobacterial PSII, whereas none of them bound directly to the red algal PSII, indicating that direct binding of Cyt c550 to PSII principally depends on the structure of PSII intrinsic proteins but not that of Cyt c550 itself. (2). Cyt c550 was functionally exchangeable between the red algal and the cyanobacterial PSII, and the red algal 12 kDa protein functionally bound to the cyanobacterial PSII, whereas the cyanobacterial 12 kDa protein did not bind to the red algal PSII. (3). The antibody against the cyanobacterial or red algal 12 kDa protein reacted with its original one but not with the homologous protein from the other organism, whereas the antibody against the red algal Cyt c550 reacted with both cyanobacterial and red algal Cyt c550. These results imply that the structure and function of Cyt c550 have been largely conserved, whereas those of the 12 kDa protein have been changed, in the two organisms studied here.  相似文献   

13.
Bacteriophytochromes constitute a light-sensing subgroup of sensory kinases with a chromophore-binding motif in the N-terminal half and a C-terminally located histidine kinase activity. The cyanobacterium Fremyella diplosiphon (also designated Calothrix sp.) expresses two sequentially very similar bacteriophytochromes, cyanobacterial phytochrome A (CphA) and cyanobacterial phytochrome B (CphB). Cyanobacterial phytochrome A has the canonical cysteine residue, by which covalent chromophore attachment is accomplished in the same manner as in plant phytochromes; however, its paralog cyanobacterial phytochrome B carries a leucine residue at that position. On the basis of in vitro experiments that showed, for both cyanobacterial phytochrome A and cyanobacterial phytochrome B, light-induced autophosphorylation and phosphate transfer to their cognate response regulator proteins RcpA and RcpB [Hübschmann T, Jorissen HJMM, B?rner T, G?rtner W & deMarsac NT (2001) Eur J Biochem268, 3383-3389], we aimed at the identification of a chromophore that is incorporated in vivo into cyanobacterial phytochrome B within the cyanobacterial cell. The approach was based on the introduction of a copy of cphB into the cyanobacterium via triparental conjugation. The His-tagged purified, recombinant protein (CphBcy) showed photoreversible absorption bands similar to those of plant and bacterial phytochromes, but with remarkably red-shifted maxima [lambda(max) 700 and 748 nm, red-absorbing (P(r)) and far red-absorbing (P(fr)) forms of phytochrome, respectively]. A comparison of the absorption maxima with those of the heterologously generated apoprotein, assembled with phycocyanobilin (lambda(max) 686 and 734 nm) or with biliverdin IXalpha (lambda(max) 700 and 750 +/- 2 nm), shows biliverdin IXalpha to be a genuine chromophore. The kinase activity of CphBcy and phosphotransfer to its cognate response regulator was found to be strictly P(r)-dependent. As an N-terminally located cysteine was found as an alternative covalent binding site for several bacteriophytochrome photoreceptors that bind biliverdin and lack the canonical cysteine residue (e.g. Agrobacterium tumefaciens and Deinococcus radiodurans), this corresponding residue in heterologously expressed cyanobacterial phytochrome B was mutated into a serine (C24S); however, there was no change in its spectral properties. On the other hand, the mutation of His267, which is located directly after the canonical cysteine, into alanine (H267A), caused complete loss of the capability of cyanobacterial phytochrome B to form a chromoprotein.  相似文献   

14.
Cyanobacterial blooms are a common issue in eutrophic freshwaters, and some cyanobacteria produce toxins, threatening the health of humans and livestock. Microcystin, a representative cyanobacterial hepatotoxin, is frequently detected in most Korean lakes and reservoirs. This study developed predictive models for cyanobacterial bloom using artificial neural networks (ANNs; self‐organizing map [SOM] and multilayer perceptron [MLP]), including an evaluation of related environmental factors. Fourteen environmental factors, as independent variables for predicting the cyanobacteria density, were measured weekly in the Daechung Reservoir from spring to autumn over 5 years (2001, 2003–2006). Cyanobacterial density was highly associated with environmental factors measured 3 weeks earlier. The SOM model was efficient in visualizing the relationships between cyanobacteria and environmental factors, and also for tracing temporal change patterns in the environmental condition of the reservoir. And the MLP model exhibited a good predictive power for the cyanobacterial density, based on the environmental factors of 3 weeks earlier. The water temperature and total dissolved nitrogen were the major determinants for cyanobacteria. The water temperature had a stronger influence on cyanobacterial growth than the nutrient concentrations in eutrophic waters. Contrary to general expectations, the nitrogen compounds played a more important role in bloom formation than the phosphorus compounds.  相似文献   

15.
Bacteriochlorophyll a Containing Microbes (BCM) are a unique group of microorganisms in the marine environment. Accurate determination of their abundance is critical for understanding their role in energy flow and carbon cycle in the ecosystem. The InfraRed Epifluorescence Microscopy (IREM) method, using infrared fluorescence as the diagnostic signal of BCM, is the most convenient means to date for enumeration of BCM in seawater, but IREM methodology suffers from serious errors introduced by cyanobacteria, which also can emit infrared fluorescence and whose abundance is of the same order of magnitude as BCM. In the present study, an advanced "Time-series observation based cyanobacteria-calibrated InfraRed Epifluorescence Microscopy (TIREM)" approach is established for accurate enumeration of BCM in marine environments. The protocol is distinguished by its use of time series observation, auto-imaging and digital analysis. In principle, the correct count of BCM can be obtained by subtracting the cyanobacterial count from the total infrared positive count. The challenge, however, is that Prochlorococcus, the most abundant cyanobacterium in the sea, is readily visible in infrared images but not visible in the initial cyanobacterial images obtained by epifluorescence microscopy because its emission signals are masked by brighter fluorescence from larger cells like Synechococcus coexisting in seawater samples. Prochlorococcus cells become gradually visible when the fluorescence from Synechococcus cells declines after a period of exposure to excitation light. Therefore the plateau (maximum) count of the cyanobacterial cells in time series images rather than in the initial ones, as previously believed, represents the correct count for the total number of cyanobacteria (Synechococcus plus Prochlorococcus cells). Thus, the accurate estimation of BCM abundance can only be calculated from the formula: [BCM cells] = [plateau count of infrared positive cells]-[plateau count of cyanobacterial cells]. The conceptual advance of the TIREM protocol is that in classical epifluorescence microscopy or in IREM protocols, quick observation is recommended to avoid quenching the fluorescence, but in the TIREM protocol, instead, time series observation is the key for obtaining reliable data. The TIREM protocol is validated by studies using BCM and cyanobacterial pure cultures as well as by examination of samples from various marine environments.  相似文献   

16.
17.
为探究蓝藻水华生消过程对浮游细菌群落组成的影响, 对三峡库区小江支流进行了采样检测, 结果表明小江采样点的水华优势蓝藻主要为水华鱼腥藻和铜绿微囊藻, 水华中期藻细胞密度分别达6.22109和8.77108个/L, 占总生物量的67%和26%。水华中、末期, 浮游细菌群落变化显著。其中, 水华中期主要以玫瑰单胞菌(Roseomona)等属细菌为主, 水华末期则以芽孢杆菌(Bacillus)等属细菌为优势, 且变形菌门(Proteobacteria)及放线菌门(Actinobacteria)细菌相对丰度明显增加, 暗示了细菌群落组成与库区支流蓝藻水华生消变化可能具有相关性。  相似文献   

18.
Cyanobacterial blooms are becoming more common in many reef habitats. The broadly acting feeding deterrent compound ypaoamide, produced by a mixed cyanobacterial assemblage, has been linked to bloom formation and mass fish die-offs ( Siganus argenteus and Siganus spinus ) in Guam. Specific metabolites produced by Lyngbya majuscula Gomont act as both feeding attractants to the specialist herbivore Stylocheilus longicauda , and as effective feeding deterrents to generalist fishes. Two-dimensional TLC (2D-TLC) analysis of cyanobacterial crude extracts was used to select chemically distinct populations (chemotypes) of bloom-forming filamentous cyanobacteria for chemical and ecological evaluation. Crude extracts produced by different species, chemotypes, and chemically distinct Micronesian marine cyanobacterial assemblages deter feeding activity of generalist reef herbivores. The ecological function of cyanobacterial secondary metabolites, especially as related to diversity of compound production and the relationship of metabolite production to bloom formation is discussed.  相似文献   

19.
M Ikeuchi  H Koike  Y Inoue 《FEBS letters》1989,253(1-2):178-182
We recently reported the presence of several low-molecular-mass protein components in the PS II O2-evolving core complex from the thermophilic cyanobacterium, Synechococcus vulcanus [(1989) FEBS Lett. 244, 391-396]. Here we have characterized the three components (4.1, 4.7, 5 kDa) of the same cyanobacterial core complex by N-terminal sequencing. There were two components in the 4.7 kDa region, both having a blocked N-terminus. One has a sequence highly homologous to open reading frame 34 of plant chloroplast DNA (tentatively designated psbM), while the other has a sequence partially homologous to open reading frame 43 of chloroplast DNA (designated psbN), although neither of the two gene products has yet been confirmed in chloroplasts. The cyanobacterial 4.1 kDa protein partially corresponds to the 4.1 kDa nuclear-encoded core component of higher plant PS II. The cyanobacterial 5 kDa component, however, shows a sequence that is unrelated to any other known proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号