首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular dynamics of binary dispersions of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol were quantified by electron spin resonance (ESR) and deuterium magnetic resonance (2H NMR) spectroscopy. The order parameter of both 5-doxylstearate (5DS) and 16-doxylstearate (16DS) was larger in vesicles comprised of plasmenylcholine in comparison to phosphatidylcholine at all temperatures studied (e.g., S = 0.592 vs. 0.487 for 5DS and 0.107 vs. 0.099 for 16DS, respectively, at 38 degrees C). Similarly, the order parameter of plasmenylcholine vesicles was larger than that of phosphatidylcholine vesicles utilizing either spin-labeled phosphatidylcholine or spin-labeled plasmenylcholine as probes of molecular motion. The ratio of the low-field to the midfield peak height in ESR spectra of 16-doxylstearate containing moieties (i.e., spin-labeled plasmenylcholine and phosphatidylcholine) was lower in plasmenylcholine vesicles (0.93 +/- 0.01) in comparison to phosphatidylcholine vesicles (1.03 +/- 0.01). 2H NMR spectroscopy demonstrated that the order parameter of plasmenylcholine was greater than that of phosphatidylcholine for one of the two diastereotopic deuterons located at the C-2 carbon of the sn-2 fatty acyl chain. The spin-lattice relaxation times for deuterated plasmenylcholine and phosphatidylcholine in binary mixtures containing 0-50 mol % cholesterol varied nonmonotonically as a function of cholesterol concentration and were different for each phospholipid subclass. Taken together, the results indicate that the vinyl ether linkage in the proximal portion of the sn-1 aliphatic chain of plasmenylcholine has substantial effects on the molecular dynamics of membrane bilayers both locally and at sites spatially distant from the covalent alteration.  相似文献   

2.
Recently, we identified a novel calcium-independent, plasmalogen-selective phospholipase A2 activity in canine myocardial cytosol which represents the major measurable phospholipase A2 activity in myocardial homogenates (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303). We now report the 154,000-fold purification of this phospholipase A2 to homogeneity through utilization of sequential anion exchange, chromatofocusing, affinity, Mono Q, and hydroxylapatite chromatographies. The purified enzyme had a molecular mass of 40 kDa, possessed a specific activity of 227 mumol/mg min, had a pH optimum of 6.4, and catalyzed the regiospecific cleavage of the sn-2 fatty acid from diradyl glycerophospholipids. The purified polypeptide was remarkable for its ability to selectively hydrolyze plasmenylcholine in homogeneous vesicles (subclass rank order: plasmenylcholine greater than alkyl-ether choline glycerophospholipid greater than phosphatidylcholine) as well as in mixed bilayers comprised of equimolar plasmenylcholine/phosphatidylcholine. Purified myocardial phospholipase A2 also possessed selectivity for hydrolysis of phospholipids containing arachidonic acid at the sn-2 position in comparison to oleic or palmitic acid. Taken together, these results constitute the first purification of a calcium-independent phospholipase with absolute regiospecificity for cleavage of the sn-2 acyl linkage in diradyl glycerophospholipids and demonstrate that myocardial phospholipase A2 has kinetic characteristics which are anticipated to result in the selective hydrolysis of sarcolemmal phospholipids during myocardial ischemia.  相似文献   

3.
The conformation of phosphatidylcholine in liquid-crystalline bilayers was studied with a novel, high-resolution method employing phosphatidylcholine species containing pyrenyl moieties in both acyl chains of variable length. Analysis of the intramolecular pyrene-pyrene collision data obtained for 30 such species in terms of a simple geometrical model showed that the sn-1 acyl chain penetrates, on the average, 0.84 +/- 0.11 methylene units (0.8 A) deeper into the bilayer than the sn-2 chain at 22 degrees C. A similar value was obtained at 37 degrees C. Since the penetration difference of the sn-1 and sn-2 acyl chains is inherently coupled to the conformation of the glycerol moiety, these data mean that the glycerol moiety of phosphatidylcholine is, on the average, only moderately tilted with respect to the bilayer plane in the liquid-crystalline state. This contrasts the perpendicular orientation observed previously for phosphatidylcholine crystals [Pearson, R. H., & Pascher, I. (1979) Nature 281, 499-501]. Importantly, addition of 50 mol % cholesterol, which is known to reduce dramatically the interactions between phosphatidylcholine molecules in bilayers, had only a small effect on the penetration difference of the acyl chains, strongly suggesting that the conformation of phosphatidylcholine in the liquid-crystalline state is determined largely by intramolecular, rather than intermolecular, interactions.  相似文献   

4.
The structure of the head-group region of some phospholipid bilayers in vesicle form has been studied and an intermolecular association of the N-methyl protons of phosphatidylcholine (PC) with the phosphate of phosphatidylethanolamine (PE) in mixed vesicles has been identified. Observation of a 31P[1H] nuclear Overhauser effect (NOE) in the phosphorus nuclear magnetic resonances of both PC and PE in mixed vesicles demonstrates an intimate dipolar interaction between some protons and the phosphorus nuclei. Substitution of deuterium for the N-methyl protons of PC eliminated the majority of the effect and necessitated the construction of a model of the bilayer surface in which the N-methyl protons of PC could interact closely with the phosphates of neighboring PE molecules. The predominant orientation of the head group must then be parallel to the bilayer surface. The amino protons of PE do not contribute significantly to the observed NOE. A corollary of these results is that there is little if any tendency for either PC or PE in the mixed vesicles to segregate into separate domains. A decrease in NOE in sphingomyelin vesicles on going from H2O to D2O suggests that an exchangeable proton contributes to the NOE. In addition the low value of the NOE observed in D2O suggests that the head-group conformation of sphingomyelin differs from that of PC.  相似文献   

5.
A simple method for the preparation of homogeneous molecular species of plasmenylcholine and plasmenylethanolamine was developed. The method utilized reverse phase high performance liquid chromatography to isolate homogeneous molecular species of plasmenylcholine prepared by acylation of lysoplasmenylcholine. Plasmenylcholine was directly converted to plasmenylethanolamine by transphosphatidylation utilizing phospholipase D from Streptomyces chromofuscus. This method permits the facile labeling of homogeneous molecular species of plasmalogens in the polar head group, the sn-2 acyl chain, or both, for the first time.  相似文献   

6.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

7.
The interaction of diacylglycerols, primarily 1,2-dilauroyl-sn-glycerol (1,2-DLG), with egg phosphatidylcholine (PC) bilayers was studied by NMR spectroscopy and other physical techniques. In the low proportions used (less than or equal to 20 mol % with respect to total lipid), 1,2-DLG formed bilayers with PC with no hexagonal phase separation, as assessed by light, polarizing and electron microscopy, and 31P and 13C NMR spectroscopy. The 13C-carbonyl chemical shift of 90% [13C]carbonyl 1,2-DLG was monitored in small unilamellar vesicles as a function of relative DLG content (1.5-20%) and temperature (10-55 degrees C). The chemically inequivalent sn-1 and sn-2 carbonyls gave a single, narrow resonance in vesicles, in contrast to neat 1,2-DLG and 1,2-DLG in organic solvents, whose spectra showed two well-separated carbonyl resonances. The chemical shift of 1,2-DLG in PC shows that the carbonyl groups are proximal to the aqueous interface, necessitating orientation of the DLG molecule along the normal to the bilayer. Both carbonyl groups are H-bonded to H2O, but the secondary ester (sn-2) carbonyl is relatively more hydrated than the primary ester (sn-1) carbonyl. The 13C-carbonyl chemical shift data further suggest that the interfacial conformation resembles that of crystalline and liquid crystalline lamellar 1,2-dilauroyl-sn-glycero-3-phosphatidylethanolamine and certain PCs, in which the glycerol backbone is perpendicular to the bilayer plane. This conformation is different from that of crystalline 1,2-dilauroyl-sn-glycerol, in which the glycerol backbone is parallel to the bilayer plane. Between 1.5 and 8% DLG in vesicles, the chemical shift of the 1,2-DLG carbonyl at a given temperature was constant. However, above 8% DLG the chemical shift at each temperature increased with increasing DLG concentration, suggesting increased hydration at higher DLG content. At low temperatures 13C NMR spectra of vesicles with the highest proportions of 1,2-DLG studied (15 and 20%) showed two DLG carbonyl resonances, which most likely represent 1,2-DLG on outer and inner leaflets of the vesicle bilayer. The two peaks collapsed into a single resonance by 38 degrees C, at which temperature the two environments equilibrate with a rate constant of approximately 60 s-1 (t1/2 approximately 10 ms). Thus, transbilayer movement of DLG is extremely fast compared with phospholipids. In vesicles the 1,3-isomer of DLG exhibited a narrow carbonyl peak slightly downfield from that of 1,2-DLG. Acyl chain migration from 1,2-DLG to 1,3-DLG was monitored directly in the vesicle by time-dependent NMR measurements.  相似文献   

8.
The CH2 proton NMR linewidths of sn-3 and sn-1 dipalmitoyl phosphatidylcholine respond differently to the addition of cholesterol to the lipid vesicles. This result points to a stereospecific phospholipid-cholesterol interaction in the "hydrogen belt" region.  相似文献   

9.
With the aid of paramagentic praseodymium ions the resonances at 60 MHz of the inward and outward facing choline methyl protons of sonicated egg yolk phosphatidylcholine vesicles were resolved. The subsequent addition of 2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPO) to the vesicle suspension broadened the inner and outer resonances equally. TEMPO easily penetrates the egg yolk phosphatidylcholine vesicles and has free access to the entire lipid volume above the gel to liquid crystalline transition temperature. The electron spin resonance (ESR) spectrum of TEMPO in the egg yolk phosphatidylcholine suspension exhibits features indicating that TEMPO dissolves principally in the hydrocarbon portion of the egg yolk phosphatidylcholine bilayer. The egg yolk phosphatidylcholine methylene chain proton resonances are also broadened by TEMPO notably to a greater extent than the choline methyl resonances. These data indicate that TEMPO should be more sensitive to the melting behavior of the fatty acyl chains of phospholipid suspensions than to the polar head groups.  相似文献   

10.
The plasmalogen sn-1 vinyl ether bond is targeted by hypochlorous acid (HOCl) produced by activated phagocytes. In the present study, the attack of the plasmalogen sn-1 vinyl ether bond by HOCl is shown to be preferred compared to the attack of double bonds present in the sn-2 position aliphatic chain (sn-2 alkenes) of both plasmenylcholine and phosphatidylcholine. Lysophosphatidylcholine (LPC) is a product from the initial HOCl attack of plasmenylcholine and the sn-2 alkene bonds present in this LPC product are secondary targets of HOCl leading to the production of LPC-chlorohydrins (ClOH). The aliphatic ClOH was demonstrated in both the positive and negative ion mode using collisionally-activated dissociation (CAD) of the molecular ion of LPC-ClOH. Furthermore, HOCl treatment of endothelial cells led to the preferential attack of plasmalogens in comparison to that of diacyl choline glycerophospholipids. Taken together, plasmenylcholine is oxidized preferentially over phosphatidylcholine and leads to the production of LPC-ClOH.  相似文献   

11.
The orientation dependence of the low frequency NMR relaxation time, T(1rho), of protons in aligned phospholipid bilayers was measured using 13C cross polarisation and direct proton experiments. The contribution of intra- and inter-molecular interactions to proton T(1rho) was determined by using dimyristoyl phosphatidylcholine (DMPC) with one hydrocarbon chain deuterated and dispersed in perdeuterated DMPC. The results indicated that intramolecular motions on the kHz timescale were the major cause of T(1rho) relaxation in phospholipid bilayers.  相似文献   

12.
Electron spin resonance (ESR) studies have been performed on N-myristoyl dimyristoylphosphatidylethanolamine (N-14-DMPE) membranes using both phosphatidylcholines spin-labeled at different positions in the sn-2 acyl chain and N-acyl phosphatidylethanolamines spin-labeled in the N-acyl chain to characterize the location and mobility of the N-acyl chain in the lipid membranes. Comparison of the positional dependences of the spectral data for the two series of spin-labeled lipids suggests that the N-acyl chain is positioned at approximately the same level as the sn-2 chain of the phosphatidylcholine spin-label. Further, similar conclusions are reached when the ESR spectra of the N-acyl PE spin-labels in dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylethanolamine (DMPE) host matrixes are compared with those of phosphatidylcholine spin-labels in these two lipids. Finally, the chain ordering effect of cholesterol has also been found to be similar for the N-acyl PE spin-label and PC spin-labels, when the host matrix is either DMPC and cholesterol or N-14-DMPE and cholesterol at a 6:4 mole ratio. In both cases, the gel-to-liquid crystalline phase transition is completely abolished but cholesterol perturbs the gel-phase mobility of N-14-DMPE more readily than that of DMPC. These results demonstrate that the long N-acyl chains are anchored firmly in the hydrophobic interior of the membrane, in an orientation that is parallel to that of the O-acyl chains, and are located at nearly the same vertical position as that of the sn-2 acyl chains in the lipid bilayer. There is a high degree of dynamic compatibility between the N-acyl chains and the O-acyl chains of the lipid bilayer core, although bilayers of N-acyl phosphatidylethanolamines possess a more hydrophobic interior than phosphatidylcholine bilayers. These results provide a structural basis for rationalizing the biological properties of NAPEs.  相似文献   

13.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

14.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

16.
Thrombin stimulation of rabbit ventricular myocytes activates a membrane-associated, Ca(2+)-independent phospholipase A(2) (PLA(2)) capable of hydrolyzing plasmenylcholine (choline plasmalogen), plasmanylcholine (alkylacyl choline phospholipid), and phosphatidylcholine substrates. To identify the endogenous phospholipid substrates, we quantified the effects of thrombin stimulation on diradyl phospholipid mass and arachidonic acid and lysophospholipid production. Thrombin stimulation resulted in a selective decrease in arachidonylated plasmenylcholine, with no change in arachidonylated phosphatidylcholine. The decrease in arachidonylated plasmenylcholine was accompanied by an increase in plasmenylcholine species containing linoleic and linolenic acids at the sn-2 position. A decrease in arachidonylated plasmenylethanolamine was also observed after thrombin stimulation, with no concomitant change in arachidonylated phosphatidylethanolamine. Thrombin stimulation resulted in the selective production of lysoplasmenylcholine, with no increase in lysophosphatidylcholine content. There was no evidence for significant acetylation of lysophospholipids to form platelet-activating factor. Arachidonic acid released after thrombin stimulation was rapidly oxidized to prostacyclin. Thus thrombin-stimulated Ca(2+)-independent PLA(2) selectively hydrolyzes arachidonylated plasmalogen substrates, resulting in production of lysoplasmalogens and prostacyclin as the principal bioactive products.  相似文献   

17.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions.This lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (?120°C to +120°C).Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids.Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 ± 0.026 ml/g for the partial specific volume of this lipid.We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude.Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

18.
Previously, a highly refined crystal structure and energy refined atomic coordinates were obtained for the basic pancreatic trypsin inhibitor, as well as numerous individual resonance assignments in the 1H NMR spectrum. These data were now used to investigate the contributions from the local ring current fields of the aromatic rings to the overall conformation dependent chemical shifts in this globular protein. A program was written which allowed the consideration of certain aspects of internal mobility of the protein, and the different commonly used ring current equa tions were compared. These studies indicate that ring current shifts are the dominant contribution to the observed conformation dependent chemical shifts of the peripheral aliphatic side chain protons. On the other hand, it appears that ring current shifts do not make dominant contributions to the conformation dependent shifts of the backbone alpha- and amide protons or the aromatic protons in the inhibitor. On the basis of the empirical calibration with the peripheral aliphatic side chain protons, the Johnson-Bovey ring current equation was selected for an analysis of the ring geometries of two prolines in the inhibitor.  相似文献   

19.
Recent studies have implicated accelerated sarcolemmal phospholipid catabolism as a mediator of the lethal sequelae of atherosclerotic heart disease. We have demonstrated that plasmalogens are the predominant phospholipid constituents of canine myocardium and that plasmalogens are hydrolyzed by a novel calcium independent plasmalogen selective phospholipase A2. Since the activities of phospholipases are modulated by the molecular dynamics and interfacial characteristics of their phospholipid substrates, we compared the molecular dynamics of plasmenylcholine and phosphatidylcholine vesicles by electron spin resonance spectroscopy and deuterium magnetic resonance spectroscopy. Plasmenylcholine vesicles have separate and distinct molecular dynamics in comparisons to their phosphatidylcholine counterparts as ascertained by substantial decreases in the angular fluctuations and motional velocities of probes attached to their sn-2 aliphatic constituents. Furthermore, since free radical oxidation of myocardial lipid constituents occurs during myocardial ischemia and reperfusion, we demonstrated that 1O2 mediated oxidation of plasmenylcholine resulted in the generation of several products which have chromatographic characteristics and molecular masses corresponding to 2-acyl lysophosphatide derivatives. Taken together, these studies underscore the biologic significance of the predominance of sarcolemmal plasmalogens present in mammalian myocardium and suggest that their catabolism by plasmalogen selective phospholipases and/or oxidative processes may contribute to the lethal sequelae of myocardial ischemia.  相似文献   

20.
Selectively deuterated N-palmitoyl sphingomyelins were studied by deuterium nuclear magnetic resonance spectroscopy ((2)H-NMR) to elucidate the backbone conformation as well as the interaction of the sphingolipids with glycerophospholipids. Macroscopic alignment of the lipid bilayers provided good spectral resolution and permitted the convenient control of bilayer hydration. Selective deuteration at the acyl chain carbons C(2) and C(3) revealed that the N-acyl chain performs a bend, similar to the sn-2 chain of the phosphatidylcholines. Profiles of C-D bond order parameters were derived from the segmental quadrupolar splittings for sphingomyelin alone and for sphingomyelin-phosphatidycholine mixtures. In the liquid-crystalline state, the N-acyl chain of sphingomyelin alone revealed significantly more configurational order than the chains of homologous disaturated or monounsaturated phosphatidylcholines. The average chain order parameters and the relative width of the order parameter distribution were correlated over a range of bilayer compositions. The temperature dependence of the (2)H-NMR spectra revealed phase separation in bilayers composed of sphingomyelin and monounsaturated phosphatidylcholine, in broad agreement with existing phase diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号