首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
Cleavage of Vicia faba nuclear DNA with the restriction endonuclease BamHI yielded discrete size classes of 250, 850, 900, 990, 1 150, 1 500 and 1 750 bp of highly repetitive DNA. Each of these sequence families comprised about 3% of the total genomic DNA. Some sequence members from each sequence family were cloned in pBR322 and their primary structures determined. Computer analyses of nucleotide sequences suggested the existence of about 60 bp sequence periodicity within the repeating unit of the 990 bp sequence family, though the extent of homology among the surmised shorter subrepeat units was very low. With other BamHI sequence families, however, the data did not show any clear internal sequence periodicity. The repeat units of the 850 bp and 1 750 bp sequence families contained nucleotide sequences homologous to the 250 bp family sequence. No sequence relationship between or among other sequence families was observed. There was 13–25% sequence variation among 6 cloned members of the 250 bp family and probably also among those of other BamHI repeat families. DNA sequences homologous to these V. faba BamHI repeat families were detected in Pisum sativum DNA by Southern blot hybridization. Furthermore, very weak cross-hybridization was observed with plant DNAs from Phaseolus vulgaris, Triticum aestivum, Cucumis sativus and Trillium kamtschaticum.  相似文献   

3.
Summary We have cloned and sequenced a bacteriophage T4 EcoRI fragment that complements T4 del (39-56) infections of an optA defective Escherichia coli strain. Bacteria containing this recombinant plasmid synthesize two new proteins with molecular weights of 9 and 26 kilodaltons. We have identified the gene encoding the 26 kilodalton protein as essential for T4 infections of optA defective E. coli. Genetic and biochemical results are consistent with the identification of this protein as the product of the dexA gene, which encodes a 3 to 5 exonuclease.  相似文献   

4.
Turgeon B  Lang BF  Meloche S 《Genomics》2002,80(6):673-680
Extracellular signal-regulated kinase 3 (ERK3) is a distantly related member of the mitogen-activated protein (MAP) kinase family of serine/threonine kinases. Here, we report the characterization of the genomic loci encoding ERK3 in mice and humans. The mouse ERK3 gene (Mapk6) spans more than 20 kb and is split into six exons. Its structure is similar to that of the human MAPK6 gene, which extends over 40 kb. We also identified and characterized a mouse Mapk6 processed pseudogene. In humans, database analysis has revealed the presence of six MAPK6 processed pseudogenes localized on four different chromosomes. We further show that the structure of MAPK6 is closely related to that of the gene encoding the homologous protein kinase p63(MAPK) (MAPK4), suggesting that the two genes arose by duplication. Our analysis demonstrates that the ERK3 subfamily of MAP kinase genes is composed of two functional genes, MAPK6 and MAPK4, and several pseudogenes.  相似文献   

5.
Escherihica coliumC122::Tn5 cells were γ-radiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umC strain's partial radiation was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umC strain (as a percentage of the wild-type yield) were: 80% for A · T → G · C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A · T → C · G transversions, 36% for G · C → A · T transitions, 25% for multi-base deletions, 21% for A · T → T · A transversions, 11% for G · C → C · G transversions, 9% for G · C → T · A transversions and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umC strain is near-normal for A · T → G · C transitions, single-base deletions and possibly A · T → C · G transversions; is generally deficient for mutagenesis at G · C sites fro transversions, and is grossly deficient in multiple mutations. Damage at G · C sites seems more difficult for translesion DNA synthesis to bypass than damage at A · T sites, and especially when trying to produced a transversion. The yield of G · C → A · T transitions in the umC strain *36% of the wild-type level) argues that a basic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD′ proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G · C vs A · T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号