首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stevens B 《Neuro-Signals》2008,16(4):278-288
Emerging evidence indicates that signaling between perisynaptic astrocytes and neurons at the tripartite synapse plays an important role during the critical period when neural circuits are formed and refined. Cross-talk between astrocytes and neurons during development mediates synaptogenesis, synapse elimination and structural plasticity through a variety of secreted and contact-dependent signals. Recent live imaging studies reveal a dynamic and cooperative interplay between astrocytes and neurons at synapses that is guided by a variety of molecular cues. A unifying theme from these recent findings is that astrocytes can promote the development and plasticity of synaptic circuits. Insight into the molecular mechanisms by which astrocytes regulate the wiring of the brain during development could lead to new therapeutic strategies to promote repair and rewiring of neural circuits in the mature brain following CNS injury and neurodegenerative disease.  相似文献   

2.
Over the past several decades, anatomical and electrophysiological analyses have demonstrated that the electrical activity of neurons is required for development of the precise patterns of synaptic connectivity found in the adult central nervous system. However, knowledge of the molecular cascades that underlie activity-dependent synaptic development remains rudimentary. As a result, many fundamental issues remain unresolved. Recent advances in differential cloning have begun to provide the tools and insight necessary to bring a molecular level of understanding to principles of activity-dependent synaptic development established via classic systems approaches.  相似文献   

3.
Diffusible factors, including netrins and semaphorins, are believed to be important cues for the formation of neural circuits in the forebrain. Here we have examined the role of netrin 1 in the development of hippocampal connections. We show that netrin 1 and its receptor, Dcc, are expressed in the developing fimbria and in projection neurons, respectively, and that netrin 1 promotes the outgrowth of hippocampal axons in vitro via DCC receptors. We also show that the hippocampus of netrin 1-deficient mice shows a misorientation of fiber tracts and pathfinding errors, as detected with antibodies against the surface proteins TAG-1, L1 and DCC. DiI injections show that hippocampal commissural axons do not cross the midline in these mutants. Instead, when axons approach the midline, they turn ventrally and form a massive aberrant projection to the ipsilateral septum. In addition, both the ipsilateral entorhino-hippocampal and the CA3-to-CA1 associational projections show an altered pattern of layer-specific termination in netrin 1-deficient mice. Finally, optical recordings with the Ca(2+) indicator Fura 2-AM show that spontaneous neuronal activity is reduced in the septum of netrin 1-mutant mice. We conclude that netrin 1 is required not only for the formation of crossed connections in the forebrain, but also for the appropriate layer-specific targeting of ipsilateral projections and for the control of normal levels of spontaneous neural activity.  相似文献   

4.
Many species of sessile marine organisms show allotype-conditional aggression towards conspecifics. However, a recent theoretical analysis (Grosberg & Quinn, 1989, Evolution 43, 504-515.) was unable to find conditions permitting a discriminatory ESS against unconditionally aggressive or non-aggressive strategies. This study shows that discrimination can be an ESS if animals interact with clonemates more frequently than randomly as occurs when animals reproduce by budding of fission. This agrees well with the observation that clonal sea anemones are usually discriminators and solitary species usually non-aggressive to conspecifics (Francis, 1988, Biol. Bull. 174, 241-253.) In addition, discrimination can be an ESS if discriminators retaliate against unconditionally aggressive conspecifics of the same allotype, or if the payoff to two sharers of a resource is greater than the payoff to both when sharing does not occur.  相似文献   

5.
Luo L  Callaway EM  Svoboda K 《Neuron》2008,57(5):634-660
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.  相似文献   

6.
7.
The recent development of light-activated optogenetic probes allows for the identification and manipulation of specific neural populations and their connections in awake animals with unprecedented spatial and temporal precision. This review describes the use of optogenetic tools to investigate neurons and neural circuits in vivo. We describe the current panel of optogenetic probes, methods of targeting these probes to specific cell types in the nervous system, and strategies of photostimulating cells in awake, behaving animals. Finally, we survey the application of optogenetic tools to studying functional neuroanatomy, behavior and the etiology and treatment of various neurological disorders.  相似文献   

8.
We introduce an optical method to stimulate individual neurons in brain slices in any arbitrary spatiotemporal pattern, using two-photon uncaging of MNI-glutamate with beam multiplexing. This method has single-cell and three-dimensional precision. By sequentially stimulating up to a thousand potential presynaptic neurons, we generated detailed functional maps of inputs to a cell. We combined this approach with two-photon calcium imaging in an all-optical method to image and manipulate circuit activity.  相似文献   

9.
Development and evolution of cerebellar neural circuits   总被引:1,自引:0,他引:1  
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.  相似文献   

10.
11.
12.
Presented in this paper is a neural network model that can be used to investigate the possible self-organizing mechanisms occurring during the early ontogeny of spinal neural circuits in the vertebrate motor system. The neural circuit is composed of multiple types of neurons which correspond to motorneurons, Renshaw cells and a hypothetical class of interneurons. While the connectivity of this circuit is genetically predetermined, the efficacies of these connections – the synaptic s trengths – evolve in accordance with activity-dependent mechanisms which are initiated by the intrinsic, autonomous activity present in the developing spinal cord. Using Oja's rule, a modified Hebbian learning scheme for adjusting the values of the connections, the network stably self-organizes developing, in the process, reciprocally activated motorneuron pools analogous to those which exist in vivo. Received: 30 December 1996 / Accepted in revised form: 20 June 1997  相似文献   

13.
Spike timing-dependent plasticity of neural circuits   总被引:12,自引:0,他引:12  
Dan Y  Poo MM 《Neuron》2004,44(1):23-30
Recent findings of spike timing-dependent plasticity (STDP) have stimulated much interest among experimentalists and theorists. Beyond the traditional correlation-based Hebbian plasticity, STDP opens up new avenues for understanding information coding and circuit plasticity that depend on the precise timing of neuronal spikes. Here we summarize experimental characterization of STDP at various synapses, the underlying cellular mechanisms, and the associated changes in neuronal excitability and dendritic integration. We also describe STDP in the context of complex spike patterns and its dependence on the dendritic location of the synapse. Finally, we discuss timing-dependent modification of neuronal receptive fields and human visual perception and the computational significance of STDP as a synaptic learning rule.  相似文献   

14.
Spontaneous correlated activity in developing neural circuits   总被引:21,自引:0,他引:21  
Feller MB 《Neuron》1999,22(4):653-656
  相似文献   

15.
The life-history tactics of many Antarctic marine invertebrates suggest that the commonly observed slow rates of growth are adaptations to the pattern of food availability, and not due to low temperature per se. This implies that marine invertebrates have been able, over the course of evolutionary time, to compensate their rates of embryonic development for the effect of temperature. Data from north Atlantic copepods indicate that this is so. It is therefore suggested that the slow rates of embryonic development in many Antarctic marine invertebrates are the result of large egg size, and not the low temperature. Large, slowly developing eggs are part of a suite of tactics, often called K-strategies, which characterise many marine invertebrates in Antarctica.  相似文献   

16.
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.  相似文献   

17.
A fundamental but unsolved problem in neuroscience is how connections between neurons might underlie information processing in central circuits. Building wiring diagrams of neural networks may accelerate our understanding of how they compute. But even if we had wiring diagrams, it is critical to know what neurons in a circuit are doing: their physiology. In both the retina and cerebral cortex, a great deal is known about topographic specificity, such as lamination and cell-type specificity of connections. Little, however, is known about connections as they relate to function. Here, we review how advances in functional imaging and electron microscopy have recently allowed the examination of relationships between sensory physiology and synaptic connections in cortical and retinal circuits.  相似文献   

18.
The cerebellum, a structure derived from the dorsal part of the most anterior hindbrain, is important for integrating sensory perception and motor control. While the structure and development of the cerebellum have been analyzed most extensively in mammals,recent studies have shown that the anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost) species, including zebrafish. In the mammalian and teleost cerebellum,Purkinje and granule cells serve, respectively, as the major GABAergic and glutamatergic neurons. Purkinje cells originate in the ventricular zone (VZ), and receive inputs from climbing fibers. Granule cells originate in the upper rhombic lip (URL) and receive inputs from mossy fibers. Thus, the teleost cerebellum shares many features with the cerebellum of other vertebrates, and isa good model system for studying cerebellar function and development. The teleost cerebellum also has features that are specific to teleosts or have not been elucidated in mammals, including eurydendroid cells and adult neurogenesis. Furthermore, the neural circuitry in part of the optic tectum and the dorsal hindbrain closely resembles the circuitry of the teleost cerebellum; hence,these are called cerebellum-like structures. Here we describe the anatomy and development of cerebellar neurons and their circuitry, and discuss the possible roles of the cerebellum and cerebellum-like structures in behavior and higher cognitive functions. We also consider the potential use of genetics and novel techniques for studying the cerebellum in zebrafish.  相似文献   

19.
We propose a mathematical model of a continuous attractor network that controls social behaviors. The model is examined with bifurcation analysis and computer simulations. The results show that the model exhibits stable steady states and thresholds for steady state transitions corresponding to some experimentally observed behaviors, such as aggression control. The performance of the model and the relation with experimental evidence are discussed.  相似文献   

20.
Optogenetics is a powerful tool that enables the spatiotemporal control of neuronal activity and circuits in behaving animals. Here, we describe our protocol for optical activation of neurons in Drosophila larvae. As an example, we discuss the use of optogenetics to activate larval nociceptors and nociception behaviors in the third-larval instar. We have previously shown that, using spatially defined GAL4 drivers and potent UAS (upstream activation sequence)-channelrhodopsin-2∷YFP transgenic strains developed in our laboratory, it is possible to manipulate neuronal populations in response to illumination by blue light and to test whether the activation of defined neural circuits is sufficient to shape behaviors of interest. Although we have only used the protocol described here in larval stages, the procedure can be adapted to study neurons in adult flies--with the caveat that blue light may not sufficiently penetrate the adult cuticle to stimulate neurons deep in the brain. This procedure takes 1 week to culture optogenetic flies and ~1 h per group for the behavioral assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号