首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isonicotinyl hydrazide, glycine hydroxamate, aminoacetonitrile and KCN inhibited the conversion of glycine to serine in spinach ( Spinacea oleracea L. cv. Viking II) mitochondria. The site of inhibition for the different inhibitors was studied. Isonicotinyl hydrazide and glycine hydroxamate both inhibited the partial reactions glycine-bicarbonate exchange and serine hydroxymethyltransferase. The inhibition was competitive for the exchange reaction and noncompetitive for serine hydroxymethyltransferase. Aminoacetonitrile at low concentration (1 m M ) inhibited the glycine-bicarbonate exchange specifically, whereas serine hydroxymethyltransferase was inhibited only at higher concentrations. Aminoacetonitrile was a competitive inhibitor for both reactions. The serine hydroxymethyltransferase was inhibited by KCN whereas the glycine-bicarbonate exchange was only partially inhibited. The KCN-inhibition of serine hydroxymethyltransferase was competitive.  相似文献   

2.
White rust (Albugo occidentalis) is a major foliar fungal disease of spinach (Spinacea oleracea) in Texas and the Southeastern USA. It causes leaf yellowing, decreasing product quality and marketability. There is a need for evaluating broad spectrum fungicides and new plant defence activators that have the potential to enhance leaf quality in spinach. Two of those fungicides are acibenzolar‐S‐methyl (ACIB) and strobilurin derivatives (STRO). ACIB appears to mimic natural systemic acquired resistance response in plants, while STRO inhibits mitochondrial respiration in fungi. We conducted three consecutive studies to a) determine the effects of ACIB rates and combinations with STRO and mefenoxam + copper hydroxide (MEFE‐Cu) for the control of white rust, and b) evaluate potential phytotoxicity expressed as leaf chlorosis. After two weekly applications in 1998, ACIB, STRO and ACIB + STRO significantly reduced the % of leaf area infected with white rust in the spinach cv. Cascade. In 1999, ACIB + STRO and ACIB + MEFE‐Cu had the best white rust efficacy, with ACIB equally effective when applied at reduced rates. After three applications in 2000, STRO, ACIB + STRO, and ACIB + MEFE‐Cu had significantly lower white rust values than the control, ACIB or MEFE‐Cu. The combination of ACIB + STRO did not cause leaf chlorosis in any year. Use of preventive applications of ACIB + STRO at 7–10 day intervals appear to be an effective strategy to improve leaf quality in spinach.  相似文献   

3.
4.
Phosphoserine aminotransferase (PSA) catalyzes the conversion of phosphohydroxypyruvate to phosphoserine in the phosphorylated pathway of serine biosynthesis. A cDNA clone encoding PSA was isolated from the cDNA library of spinach (Spinacia oleracea L.) green leaves. Determination of the nucleotide sequence revealed the presence of an open reading frame encoding 430 amino acids, exhibiting 38-50% homology with the amino acid sequences of bacterial, yeast and animal PSA. It contains an N-terminal extension of ca. 60 amino acids in addition to the sequences from other organisms. The general features of plastidic transit peptide are observed in this N-terminal sequence, suggesting the plastid localization of the PSA protein encoded by this cDNA. The bacterial expression of the cDNA could functionally rescue the auxotrophy of serine in the serC- mutant, Escherichia coli KL282. The enzymatic activity of PSA was demonstrated in vitro in the extracts of E. coli over-expressing the cDNA. Southern blot analysis indicated the presence of a couple of related genes (Psa) in the spinach genome. RNA blot hybridization suggested the preferential expression of the Psa gene in the roots of green seedlings and in the suspension cells cultured under a dark condition.  相似文献   

5.
The precursors of the F1-ATPase -subunits fromNicotiana plumbaginifolia andNeurospora crassa were imported into isolated spinach (Spinacia oleracea L.) leaf mitochondria. Both F1 precursors were imported and processed to mature size products. No import of the mitochondrial precursor proteins into isolated intact spinach chloroplasts was seen. Moreover, the precursor of the 33 kDa protein of photosynthetic water-splitting enzyme was not imported into the leaf mitochondria. This study provides the first experimental report ofin vitro import of precursor proteins into plant mitochondria isolated from photosynthetic tissue and enables studies of protein sorting between mitochondria and chloroplasts in a system which is homologous with respect to organelles. The results suggest a high organellar specificity in the plant cell for the cytoplasmically synthesized precursor proteins.  相似文献   

6.
7.
The enzyme fructose- 1,6-diphosphatase (FDPase), involved in the reductive cycle of the pentose phosphate pathway, has been purified from spinach leaves by heating (30 min at 60°), “salting out” with ammonium sulphate (between 30–70% of saturation), filtration through Sephadex G-100 and G-200, fractionation on DEAE-52 cellulose and preparative electrophoresis on polyacrylamide gel. Filtration through DEAE-cellulose led to the isolation of two active fractions (fractions I and II) with very close MWs and isoelectric points. By electrophoresis on acrylamide gel, both fractions gave two active fractions (fractions Ia-Ib and IIa-IIb). The fractions with low electrophoretic migration rate—Ib and IIb—are stable in acid and neutral pH, have a MW between 90 000 and 110 000 and constitute the native form of the photosynthetic enzyme. The fractions of faster migration rate—Ia and IIa-originate from the corresponding fractions Ib and IIb under alkaline conditions, show half the MW of the respective fractions, and behave as subunits of the original dimer form. Measured by electrofocusing, the four active fractions have isoclectric points in the range 4·10–4.30.  相似文献   

8.
Glutathione reductase (GR; EC 1.6.4.2) was purified from spinach roots (rGR) to homogeneity in terms of SDS-PAGE, and its properties were compared with those of the enzyme from spinach leaves (IGR). The two enzymes had similar native molecular (118000) and subunit masses (58000) and immunochemical properties, but different pH optima (ca pH 7.8 for IGR, ca pH 7.2 for rGR) and amino acid compositions. Peptide maps of two GRs showed that they differed from each other. The N-terminal amino acid of the IGR was glycine and that of the rGR was blocked. The partial amino acid sequence of the N-terminal region of the IGR was determined to the 11 th residue and it was found that the sequence of 8 amino acids of the IGR had 100% homology with that of the putative chloroplast GR from Arabidopsis and pea.  相似文献   

9.
The detergent Tween-20 solubilized preferentially portions of the marginal regions of Spinacea oleracea L. thylakoid membranes and, thus, opened the inside of the grana to the external media. Differential centrifugation. following Tween-20 solubilization. enabled separate fractions of grana and stromal-exposed membranes to be isolated. Analysis of Tween-20 solubilized material, after pelleting all membrane material by centrifugation at 100 000 g, revealed polypeptides associated with the coupling factor (CF1) particles, cytochrome b6/f and photosystem II complexes, suggesting that the marginal membranes contain these proteins. Concomitantly, the 100 000 g pellet was depleted in cytochrome b6/f and P700, determined spectroscopically, Thus. our results reveal the margin to be a distinct membrane region, which does not contain the light-harvesting centers of photosystem II (LHC II). The implication of these results, in terms of the energetic interaction of components of granal and stromalexposed membrane regions, is discussed.  相似文献   

10.
An acid-stable and heat-labile proteinous protease inhibitor which was found in spinach leaves but not in seeds was isolated by sequential chromatography and preparative isoelectric focusing. The isoelectric point of this inhibitor was 4.5. The inhibitor had a Mr of ca 18 000 and was rich in aspartic acid and glycine; it had 4 half-cystine, 2 tryptophan and no methionine residues. Its extinction coefficient (E|cm%) was 13.7 at 280 nm. The inhibition was competitive and the dissociation constant was 3.32 × 10?13 M. The inhibitor was specific to serine proteases and strongly inhibited trypsin and weakly inhibited α-chymotrypsin and kallikrein.  相似文献   

11.
Methods were developed for isolating highly-purified peroxisomes under iso-osmotic conditions from 3 plant parts, namely cotyledons of cotton ( Gossypium hirsutum L.) seedlings, endosperm of castor bean ( Ricinus communis L.) seedlings and leaves of mature spinach ( Spinaca oleracea L.) plants. Purification was achieved by sedimentation of the organelles into metrizamide gradients centrifuged in a vertical rotor (VTi 50). Gradients consisted of an upper transition layer (1:1 mixture of homogenizing medium and 0.25 M metrizamide), a linear 0.25–0.76 M metrizamide gradient and a 0.76 M metrizamide pad. Peroxisomes from all 3 plant parts were recovered in a major band at a density ranging from 1.24 to 1.27 g cm−3, which is a density range similar to that for peroxisomes isolated in sucrose gradients. The percent of the total gradient cytochrome c oxidase (mitochondria marker) activity recovered in peroxisome fractions ranged from 1.5% in endosperm to 2.8% in leaves, while a plastid marker (chlorophyll or galactosyl transferase activity) ranged from undetectable in leaf peroxisome fractions to 3.6% in endosperm peroxisome fractions. Intactness of the peroxisomes was judged to be 69%, 89% and 78% for the cotyledon, endosperm and leaf peroxisomes, respectively. Isolated peroxisomes were stable for at least 5 h in metrizamide medium. Microscopic (bright-field and transmission electron microscopy) assessments verified that the peroxisomes were morphologically intact and fractions were essentially free of contaminating organelles. Metrizamide is an excellent iso-osmotic medium for purifying peroxisomes from these plant organs and tissue.  相似文献   

12.
A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers.  相似文献   

13.
Intact mitochondria were prepared from spinach (Spinacia oleracea L. var. Kyoho) leaf protoplasts and purified by Percoll discontinuous gradient centrifugation. Assays of several marker enzymes showed that the final mitochondrial preparations obtained are nearly free from other contaminating organelles, e.g. chloroplasts, peroxisomes, and endoplasmic reticulum. These mitochondria oxidized malate, glycine, succinate, and NADH, tightly coupled to oxidative phosphorylation with high values of ADP to O ratio as well as respiratory control ratio. The rate of NADH oxidation was 331 nmoles O2 per milligram mitochondrial protein per minute, which is comparable to that obtained by highly purified potato or mung bean mitochondria. However, the activity of glutamine synthetase was barely detectable in the isolated mitochondrial fraction. This finding rules out a hypothetical scheme (Jackson, Dench, Morris, Lui, Hall, Moore 1971 Biochem Soc Trans 7: 1122) dealing with the role of the mitochondrial glutamine synthetase in the reassimilation of NH3, which is released during the step of photorespiratory glycine decarboxylation in green leaf tissues, but it is consistent with the photosynthetic nitrogen cycle (Keys, Bird, Cornelius, Lea, Wallsgrove, Miflin 1978 Nature (Lond) 275: 741), in which NH3 reassimilation occurs outside the mitochondria.  相似文献   

14.
The first enzyme unique to lysine biosynthesis in higher plants, dihydrodipicolinate synthase, has been partially purified from spinach leaves, using ion exchange chromatography, hydrophobic interaction chromatography and gel filtration. The spinach enzyme is moderately stable to short-term exposure to heat, in contrast to the pea leaf enzyme, but is unstable on storage even at ?20°. Thiol reagents interfere with the calorimetric assay used, and so cannot be routinely used to stabilize the enzyme, which has an active sulphydryl group. The MW of the enzyme is 115000 (gel filtration). Lysine is a potent inhibitor with an I(0.5) of 2OμM, whilst the lysine analogue S-β-aminoethylcysteinc has an I(0.5) of 400 μM. The Kt´m for aspartic-β-semialdehyde was determined to be 1.4mM, but this compound demonstrated marked substrate inhibition at concentrations above 7 mM, increasing the apparent S(0.5)for the second substrate, pyruvate.  相似文献   

15.
A proteinase secreted in the late stationary phase was isolated from the culture fluid of Bacillus intermedius 3-19 by ion-exchange chromatography on CM-cellulose followed by FPLC on a Mono S column. The enzyme was completely inhibited by the serine proteinase inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. The maximum proteolytic activity against the synthetic chromogenic substrate Z-Ala-Ala-Leu-pNA was observed at pH 9.0. The molecular weight of the enzyme is 28 kD and its isoelectric point is 9.2. We have also determined pH- and thermostability and Km and kcat of this proteinase. The enzyme has been classified as a thiol-dependent serine proteinase. N-Terminal amino acid sequence (10 residues) and amino acid composition of the protein were also determined. By the mode of hydrolysis of peptide bonds in the oxidized B-chain of insulin, this enzyme is similar to the thiol-dependent serine proteinase 1 from B. intermedius 3-19 secreted during vegetative growth.  相似文献   

16.
17.
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme''s rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme''s stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.  相似文献   

18.
Freezing of spinach leaf discs ( Spinacia aleracea L. cv. Estivato) resulted in an irreversible and parallel loss of protein-sulfhydryl (SH) and water-soluble protein. This decrease was inversely related to the increase in freezing injury as determined by the loss of electrolytes from the tissue after thawing. Loss of proteins and protein-SH occurred during freezing of the tissue and was not enhanced by thawing. The parallel decreases in content of soluble proteins and SH groups make it impossible to determine whether oxidation of protein-SH groups is the primary step in decline of protein content. During freezing the content of non-protein-SH compounds, mainly glutathione (GSH), was decreased to a lesser extent than that of protein-SH. Contrary to protein-SH, the levels of non-protein-SH declined substantially after thawing. The data indicate that GSH is not directly involved in protection of soluble proteins against freezing-induced denaturation.  相似文献   

19.
The P, H, and T proteins of the glycine cleavage system have been purified separately from pea leaf mitochondria and demonstrate molecular weights of 98,000, 15,500, and 45,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of P protein by gel filtration was 210,000, indicating that this enzyme has a native homodimer conformation. Reconstitution assays containing purified P, H, and T proteins and yeast lipoamide dehydrogenase catalyze the oxidation of glycine and demonstrate a strict dependence on pyridoxal phosphate, tetrahydrofolate, NAD+, and dithiothreitol. The released CO2, methylamine-H protein intermediate, and methylenetetrahydrofolate are produced in stoichiometric amounts from glycine during the cleavage reaction. H protein acts as co-substrate with glycine during the decarboxylation reaction, demonstrating an apparent Km value of 2.2 microM. P and H protein alone jointly catalyze the glycine carboxyl-14 CO2 exchange reaction in the presence of pyridoxal phosphate and dithiothreitol. L protein of the glycine cleavage system was immunopurified using monoclonal antibodies. Antigenic and molecular weight similarities of the L protein with the lipoamide dehydrogenase component of the pyruvate dehydrogenase complex were shown suggesting the possibility of common isomers of lipoamide dehydrogenase for the two enzyme complexes.  相似文献   

20.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号