首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic responses to a single i.v. injection of cristalline insulin (0.2 i.u./kg b.w.) were compared in control and T4-treated dogs both at rest and after prolonged physical exercise. The post-insulin decrease in blood glucose was significantly correlated with the pre-insulin BG concentration. Thus, the insulin-induced fall of BG was greatest in T4-treated dogs at rest, in which significantly higher BG levels were found in comparison with controls, and smallest in the same dogs after exercise, i.e. at the lowest initial BG concentrations. The post-insulin hypoglycaemia caused marked increases in the plasma FFA level in control dogs, both at rest and after physical effort, and in T4-treated dogs at rest. They were accompanied by elevations in the plasma adrenaline levels. In T4-treated dogs given insulin after exercise decreases both in the plasma FFA and A concentrations were found. In the majority of the control and T4-treated dogs insulin injected at rest caused an increase in blood LA levels, being more pronounced in the latter. Insulin injected after physical exercise did not change blood LA level in T4 treated dogs, and it caused its decrease in the control animals. The results of these investigations show that both T4-treatment and physical exercise, performed prior to insulin injection, modify the metabolic response to insulin and post-insulin hypoglycaemia.  相似文献   

2.
Six male non-endurance trained subjects (S) and six marathon runners (M) underwent graded treadmill exercise (T) and isoproterenol stimulation (I; 2 and 4 microgram X min-1). beta-adrenergic receptor density was additionally determined as the amount of 3H-Dihydroalprenolol (DHA) specifically bound on intact polymorphonuclear leucocytes. Heart rate, VO2 uptake, lactate, plasma noradrenaline, and adrenaline were estimated during T. Heart rate, stroke volume, cardiac output, as well as lactate, glucose, free fatty acids (FFA), and glycerol levels in the blood were determined during I. M showed the known training-dependent responses during T, such as lower heart rates, lactate levels, and plasma catecholamines at identical work loads, as well as higher VO2 max than S. I-induced cardiac output increase was quite similar in both groups. Stroke volume, however, increased significantly in M and stayed constant in S. Lactate decreased (S), glucose increased significantly (M), glycerol increased similarly in both groups, FFA rise was less marked in S. I-induced stroke volume response (I) may be indicative of a more economic regulation of heart work in M than S. Lactate decrease and less marked FFA increase, as observed in S, may be the result of a somewhat higher cardiac energy demand, dependent on less economic heart work. Higher DHA-binding as observed in M, as well as stroke volume response and glucose increase, may be indicators of a training-dependent rise in sensitivity to catecholamines. The unsolved question is, however, to what extent beta-receptor responses in intact blood cells are significant for receptor behavior in other organs.  相似文献   

3.
Effects of thyroxine on temperature and metabolism during exercise were studied in dogs after beta-adrenergic blockade. Dogs performed 60 min treadmill exercise of moderate intensity 5 and 72 h following thyroxine injected s.c. in a single dose of 0.1 mg/kg b.w. Thyroxine increased significantly the lipolytic response to exercise as well as blood lactate (LA) concentrations and rectal temperature (Tre) during exercise as early as 5h following the hormone administration. The changes became more pronounced 72 h after the injection. At rest Tre, blood FFA and LA levels in the thyroxine-treated dogs did not differ from the control values, and blood glucose was slightly, but significantly higher. Propranolol given intravenously in a dose of 0.25 mg/kg at 30 min of the exercise performed 72 h following thyroxine injection abolished the plasma FFA rise, and inhibited to a certain extent increases in Tre and blood LA concentrations during the next 30 min of exercise.  相似文献   

4.
D Garceau  N Yamaguchi  R Goyer 《Life sciences》1985,37(21):1963-1970
Effects of various sympathomimetic amines on the hepatic glucose mobilization were studied in anesthetized dogs. Phenylephrine (30, 100, 300 micrograms), isoproterenol (0.1, 1, 10 micrograms) and (-)-norepinephrine (0.5, 5, 50 micrograms) were injected into the common hepatic artery in three separate groups of dogs. Dose-dependent increases in hepatic venous glucose concentration were observed following the injections of these drugs. Aortic glucose concentration also increased significantly, but to a lesser extent as compared with that in hepatic venous blood. Peak responses were obtained 3 to 5 min after the drug administrations. The increases in hepatic venous glucose concentration induced by the injections of (-)-norepinephrine were significantly diminished to a similar extent in dogs treated with either phentolamine (2 mg/kg, i.v.) or (-)-propranolol (0.2 mg/kg, i.v.). The results indicate that in the dog liver in vivo, both hepatic alpha- and beta-adrenoceptors can be involved in the hepatic glycogenolysis. The glycogenolytic response to exogenously administered (-)-norepinephrine is mediated via alpha- as well as beta-adrenoceptors in the liver of anesthetized dogs.  相似文献   

5.
Progressive enhancement of body temperature responses to consecutive exercise-bouts of the same intensity in dogs. Acta physiol. pol., 1985, 36 (3): 165-174. Changes in rectal (Tre), muscle (Tm), and hypothalamic (Thy) temperatures, plasma osmolality, and some intermediary metabolic variables were examined in dogs performing four successive exercise-bouts of the same intensity. During the rest-intervals separating the exercise-bouts body temperatures returned to initial levels and water losses were replaced. Tm and Tre responses to consecutive exercise-bouts were progressively increasing. Similar tendency was found in Thy changes. Cardiac and respiratory frequencies attained the same levels in all four exercise-bouts, while blood lactate and FFA concentrations were increasing and blood glucose level was decreasing progressively. No changes in plasma osmolality was noted. Exercise-induced increases in Tm correlated positively with plasma FFA concentration (r = 0.68). Body temperature responses to exercise were reduced by beta-adrenergic blockade. It is concluded that the enhancement of the thermal responses to consecutive exercise-bouts can be related to the metabolic action of catecholamines.  相似文献   

6.
Intravenous infusions of ammonium chloride (62.3 mumol.kg-1.min-1) for 30 min caused a significant increase in blood glucose, lactate, pyruvate and free fatty acid (FFA) levels. A similar effect was also observed during infusion of adrenaline. Propanolol--a beta-receptor blocking agent--completely prevented the rise of blood pyruvate and lactate after adrenaline when 8.3 microgram.kg-1.min-1 of propranolol were infused, but not after NH4Cl administration. Lipolytic actions of adrenaline were completely prevented but that of NH4Cl was only significantly diminished by blockade of beta-receptors with propranolol. It was concluded that the influence of ammonium ions on blood lactate and pyruvate and FFA was not entirely mediated by adrenaline.  相似文献   

7.
The purpose of the present work was to further elucidate the role of thyroid hormones in the control of body temperature and metabolism during physical exercise. Changes in rectal temperature (Tre), some parameters of exercise-metabolism and in the plasma noradrenaline (NA) levels were examined in eight dogs performing submaximal treadmill exercise to exhaustion before and after thyroidectomy (THY). The metabolic 'responses to adrenaline (A) infusion were also compared in intact and THY dogs. During the exercise performed by THY dogs Tre increases were markedly attenuated, plasma FFA level increases were reduced and the pattern of plasma NA changes was modified in comparison with control runs. The reduced exercise-induced FFA mobilization in THY dogs might be attributed to a lower activation of the adrenergic system in the later stage of exercise and to the weaker lipolytic action of catecholamines. The attenuated Tre increases during exercise performed by THY dogs and the exercise-hyperthermia described previously in dogs treated with thyroid ormones suggest that an optimum level of thyroid hormones is necessary to induce typical changes in body temperature during physical exercise.  相似文献   

8.
Infusions of 2-deoxyglucose (2-DG) into intact, adrenalectomized, and adrenalectomized-hypophysectomized dogs caused increases in plasma free fatty acid (FFA) levels which could be reversed by infusing hexamethonium, or prevented by epidural anesthesia or destruction of the thoracic spinal cord. Similar infusions of 2-DG were given to adrenalectomized dogs after transection of the spinal cord. Lesions between C 4 and T 7 prevented the increase in FFA while lesions at T 8 or C 2-3 did not. These results indicate that inhibition of glucose metabolism by 2-DG causes an increase in plasma FFA by a pathway involving the sympathetic nervous system and that there are centers regulating this activity in the cervical portion of the spinal cord.  相似文献   

9.
1. Changes in blood levels of thyroxine (T4), triiodothyronine (T3), free fatty acids (FFA), glucose, pyruvic acid and lactic acid in the harp seal during moult, were studied. 2. Serum levels of both T4 and T3 showed significant increase in the moult phase from that in the pre-moult phase. While T4 level continued to remain high during the early and late post-moult phases, T3 level dropped in the latter two phases to the same low pre-moult level. 3. The T3/T4 ratio was significantly higher during the pre-moult phase than that in all the other phases. It is suggested that the high pre-moult T3/T4 ratio marks the initiation of moult. 4. There were no significant changes in the levels of the metabolites studied except that of FFA which was highest in the moult phase indicating the hormonal basis of lipid mobilization.  相似文献   

10.
Ten prepubertal boys performed 60-min cycle exercise at about 60% of their maximal oxygen uptake as previously measured. To measure packed cell volume, plasma glucose, free fatty acids (FFA), glycerol and catecholamines, blood samples were drawn at rest using a heparinized catheter and at the 15th, 30th and 60th min of the exercise and after 30 min of recovery. At rest, the blood glucose concentrations were at the lowest values for normal. Exercise induced a small decrease of blood glucose which was combined with an abrupt increase of the noradrenaline concentration during the first 15 min. The FFA and glycerol concentrations increased throughout the exercise linearly with that of adrenaline. Compared to adults, the FFA uptake expressed per minute and per litre of oxygen uptake was greater in children. These results suggested that it is difficult for children to maintain a constant blood glucose concentration and that prolonged exercise provided a real stimulus to hypoglycaemia. An immediate and large increase in noradrenaline concentration during exercise and a greater utilization of FFA was probably used by children to prevent hypoglycaemia.  相似文献   

11.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

12.
Short (7 days) T3-treatment has no influence on the plasma glucose and FFA concentration and blood lactate level, as well as on the hepatic glycogen content in the rats. The rise in T3 levels, observed in our study, was accompanied by a fall in T4 concentrations, indicating suppression of the endogenous T4 production. On the other hand, glycogenolytic activity of rat serum in vitro is the highest in the system: control liver slices-serum of rats pretreated with T3 as compared to the system: control liver slices-control serum. These observations may lead to conclusions, that serum of rats pretreated with T3 contains factors exhibiting the greater ability to mobilize glucose from liver slices than the control serum (euthyroid). The possibility, that pretreatment with T3 may cause a decrease in the number and/or affinity of beta-adrenergic receptors in the rat liver, is discussed.  相似文献   

13.
To evaluate the contribution of catecholamines to the fasting-induced lipid mobilization prolonged or acute blockade of beta-adrenergic receptors with propranolol was applied in dogs during 72 hrs of food withdrawal. Propranolol given orally in a dose of 15 mg twice daily throughout the whole period of fasting failed to modify the increases in the plasma FFA and glycerol concentrations. The acute beta-adrenergic blockade due to i.v. injection of propranolol (0.5 mg/kg b.w.) caused marked decreases in the plasma glycerol concentration both in the dogs fasting for 24 h and 72 hrs, whereas the effects of propranolol on the plasma FFA concentration was found only in the early stage of fasting. Plasma catecholamine concentrations were enhanced significantly by the 72 hrs food withdrawal and neither prolonged nor acute propranolol administration modified significantly this effect. The fasting-induced decreases in the serum insulin concentration were more pronounced in dogs treated with propranolol. Results of this study indicate that catecholamines are involved in the control of lipolysis during short term starvation. However, under these conditions beta-adrenergic blockade did not impair FFA mobilization most probably due to an enhanced contribution of other hormones to the control of this process.  相似文献   

14.
Dogs with indwelling arterial and venous catheters ran on a treadmill on a 10% or on a 15% slope at 100 m/min. Glycerol turnover ([2-3H]-glycerol) and FFA turnover ([1-14C]palmitate) were measured simultaneously. Both turnovers were greatly increased by exercise. Similar increases were produced in resting dogs by norepinephrine infusions (0.5 mug/kg-min). At rest, as well as during exercise, there was a straight-line correlation between the ratio of disappearance of each substrate and their respective plasma concentrations. Over a wide range there was a straight-line correlation between the rate of production of FFA (RaFFA) and that of glycerol (RaGLY) at rest as well as during exercise. At any given RaFFA, RaGLY was higher in the running than in the resting dog. At rest the ratio of RaFFA/RaGLY was found to give the theoretical value of 3.0 only when RaFFA was 10-15 mumol/kg-min, below this the ratio was lower and above this it was higher. During exercise the ratio was lower than at rest and at heavier load lower than at lighter work. The results suggest that in vivo a combination of partial and complete lipolysis as well as reesterification occurs. The glucose equivalent of the glycerol turnover (if 100% converted) represents (under the given experimental conditions) 14-18% of the hepatic glucose output on the 15% slope and 20-25% of it on the 10% slope.  相似文献   

15.
The metabolic role of neurally released noradrenaline (NA) was studied in the liver of anesthetized dogs. Sustained stimulation with various frequencies was directly applied on the anterior plexus of hepatic nerves. Stimulation-induced changes in plasma concentrations of endogenous catecholamines in hepatic venous blood were determined in correlation with concomitant changes in those of glucose (GL). Mean basal values for hepatic venous NA, adrenaline, dopamine, and GL were 0.062, 0.022, 0.032 ng/mL, and 97.9 mg%, respectively. Among these catecholamines, NA was the only one being released significantly during stimulation. While hepatic venous NA increased rapidly during stimulation, being maximum within 3 min, hepatic venous GL increased gradually, reaching a maximum value 5 min after the onset of stimulation. A highly significant correlation (r = 0.90, P less than 0.001) was found between changes in hepatic venous NA and GL concentrations observed during stimulation at various frequencies (2-16 Hz). However, hepatic vasoconstricting responses to stimulation were not correlated with increased hepatic venous GL. An alpha-blockade with phentolamine (2 mg/kg, iv) resulted in diminished release of GL by approximately 50% (P less than 0.05) and reduced hepatic arterial vasoconstriction by approximately 47% (P less than 0.01) upon stimulation (8 Hz, 5 min), even though NA release was markedly enhanced. We conclude that in the dog, NA is the sole catecholamine released within the liver in response to direct hepatic nerve stimulation, and NA thus released mediates the hepatic glycogenolysis via alpha-adrenoceptors.  相似文献   

16.
We studied serial plasma catecholamine levels in healthy newborn sheep over the first ten days of life. The results show that plasma norepinephrine values in newborn sheep are 3-4 fold higher, and plasma epinephrine values are two-fold higher than values in term fetal sheep. These elevations are sustained over the first 10 days of life. Cardiovascular (heart rate and blood pressure) and metabolic parameters (glucose and free fatty acids) are also significantly elevated above fetal levels. We performed graded catecholamine infusions in newborn animals and adult ewes to determine the minimum plasma catecholamine concentrations necessary for discernible physiologic effects. In response to step-wise increases in epinephrine or norepinephrine infusion rates, there were immediate increases in blood pressure and other physiologic responses. This pattern was seen in both newborn and adult animals, and differed from previous observations in fetal sheep where log-linear, dose response curves characteristic of a threshold response were seen. These results suggest that during the first two weeks of life plasma catecholamine levels are elevated above the threshold value for physiologic responses. These sustained elevations in circulating catecholamines are important in the maintenance of physiologic homeostasis.  相似文献   

17.
The hormonal and metabolic responses of beta-endorphin infused cephalad into the carotid artery, or via the jugular vein, were examined in 10 normal dogs. The intracarotid administration of beta-endorphin resulted in significant increases in plasma glucagon, adrenocorticotropin, and cortisol levels. Hepatic glucose production increased only transiently and there was no significant change in glucose disappearance or plasma glucose concentrations. Infusion of beta-endorphin in the jugular vein gave rise to significant increases in glucagon and cortisol levels and to a transient increase in plasma epinephrine. Although no significant changes in glucose kinetics could be demonstrated, there was a slight transient decrease in plasma glucose concentrations. In conclusion, both intracarotid and intrajugular infusions of beta-endorphin stimulated glucagon secretion independent of circulating catecholamines, and increased cortisol release, probably through activation of the pituitary-adrenocortical axis.  相似文献   

18.
Lactating ewes received continuous intravenous infusions of adrenaline (0.05 micrograms/kg liveweight) for 4 days. Prior to, during and after adrenaline infusions, milk yield and composition were monitored. Plasma concentrations of metabolites and hormones were measured each day and glucose biokinetics were measured in non-steady state at the start and end of adrenaline infusions. During adrenaline infusion, milk yield and content of solids-not-fat decreased and milk fat content was reduced on the first day of infusion. Plasma glucose was raised throughout the period of adrenaline infusion, plasma lactate increased over the first 4 h from the start of infusion and plasma non-esterified fatty acids increased for 2 h at the start of infusion and tended to increase during the first 2-3 h after withdrawal of adrenaline. Plasma growth hormone remained relatively stable except for a marked increase at 30 min after withdrawal of adrenaline. At the start and immediately after withdrawal of adrenaline infusion plasma insulin was increased approximately twofold. Glucose production, but not utilization, increased at the start of infusions. Immediately after withdrawal of adrenaline glucose utilization increased 2.5-fold with a smaller response in glucose production. There was essentially no change in glucose clearance during adrenaline infusion but a marked increase occurred after withdrawal of adrenaline.  相似文献   

19.
Sex-related differences of catecholamine responses were evaluated in nine healthy women and six age-matched men at rest and during incremental treadmill exercise. Heart rate, oxygen uptake (VO2), glucose and lactate blood levels as well as the free plasma catecholamines, noradrenaline and adrenaline, were determined. No significant differences were observed for these parameters between the two groups at rest. The females had relative VO2max and maximal running velocities similar to the males, which points to a comparable dynamic performance ability. However, at identical work loads, noradrenaline, adrenaline and glucose levels were significantly higher in women than in men. Lactate, heart rate and relative VO2 showed a similar tendency at submaximal exercise levels, indicating higher strain at identical stress levels in women. The reason for the higher sympathetic activity in women at identical work loads may be their relatively smaller skeletal muscle mass in relation to the loads during this test.  相似文献   

20.
AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号