首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus subtilis bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) protein was characterized and shown to form a stable complex with Escherichia coli uracil-DNA glycosylase (Ung). As determined by mass spectrometry, the Ugi protein had a molecular weight of 9,474. We confirmed this value by sedimentation equilibrium centrifugation and determined that Ugi exists as a monomeric protein in solution. Amino acid analysis performed on both Ugi and Ung proteins was in excellent agreement with the amino acid composition predicted from the respective nucleotide sequence of each gene. The Ung.Ugi complex was resolved from its constitutive components by nondenaturing polyacrylamide gel electrophoresis and shown to possess a 1:1 stoichiometry. Analytical ultracentrifugation studies revealed that the Ung.Ugi complex had a molecular weight of 35,400, consistent with the complex containing one molecule each of Ung and Ugi. The acidic isoelectric points of the protein species were 6.6 (Ung) and 4.2 (Ugi), whereas the Ung.Ugi complex had an isoelectric point of 4.9. Dissociation of the Ung.Ugi complex by SDS-polyacrylamide gel electrophoresis revealed no apparent alteration in the molecular weight of either polypeptide subsequent to binding. Furthermore, when the Ung.Ugi complex was treated with urea and resolved by urea-polyacrylamide gel electrophoresis, both uracil-DNA glycosylase and inhibitor activities were recovered from the dissociated complex. Thus, the complex seems to be reversible. In addition, we demonstrated that the Ugi interaction with Ung prevents enzyme binding to DNA and dissociates uracil-DNA glycosylase from a preformed DNA complex.  相似文献   

2.
The error frequency and mutational specificity associated with Escherichia coli uracil-initiated base excision repair were measured using an M13mp2 lacZalpha DNA-based reversion assay. Repair was detected in cell-free extracts utilizing a form I DNA substrate containing a site-specific uracil residue. The rate and extent of complete uracil-DNA repair were measured using uracil-DNA glycosylase (Ung)- or double-strand uracil-DNA glycosylase (Dug)-proficient and -deficient isogenic E. coli cells. In reactions utilizing E. coli NR8051 (ung(+) dug(+)), approximately 80% of the uracil-DNA was repaired, whereas about 20% repair was observed using NR8052 (ung(-) dug(+)) cells. The Ung-deficient reaction was insensitive to inhibition by the PBS2 uracil-DNA glycosylase inhibitor protein, implying the involvement of Dug activity. Under both conditions, repaired form I DNA accumulated in conjunction with limited DNA synthesis associated with a repair patch size of 1-20 nucleotides. Reactions conducted with E. coli BH156 (ung(-) dug(+)), BH157 (ung(+) dug(-)), and BH158 (ung(-) dug(-)) cells provided direct evidence for the involvement of Dug in uracil-DNA repair. The rate of repair was 5-fold greater in the Ung-proficient than in the Ung-deficient reactions, while repair was not detected in reactions deficient in both Ung and Dug. The base substitution reversion frequency associated with uracil-DNA repair was determined to be approximately 5.5 x 10(-)(4) with transversion mutations dominating the mutational spectrum. In the presence of Dug, inactivation of Ung resulted in up to a 7.3-fold increase in mutation frequency without a dramatic change in mutational specificity.  相似文献   

3.
4.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

5.
6.
Uracil-DNA glycosylase has been purified approximately 130,000-fold from extracts of human placenta. Although all of the uracil-DNA glycosylase activity coeluted through six chromatographic steps, at least four distinct peaks of activity were resolved in the final purification on a Mono S column. Each of the peaks containing uracil-DNA glycosylase activity contained two peptides of Mr = 29,000 and Mr = 26,500, respectively, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Experimental evidence indicated that the Mr = 29,000 peptide was the uracil-DNA glycosylase enzyme. The amino-terminal sequence of each peptide was determined after blotting of the peptides from the gel onto Polybrene GF/C paper. The sequences were not related to each other, and neither was any significant homology to other proteins found. Uracil-DNA glycosylase had a molecular turnover number of approximately 600/min and apparent Km value of 2 microM. The enzyme is a basic protein and was stimulated about 10-fold by 60-70 mM NaCl whereas higher concentrations were inhibitory.  相似文献   

7.
Uracil-DNA glycosylase activity in human blood cells   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Uracil in DNA may arise by cytosine deamination or thymine replacement and is removed during DNA repair. Fruitfly larvae lack two repair enzymes, the major uracil-DNA glycosylase and dUTPase, and may accumulate uracil-DNA. We asked if larval tissues contain proteins that specifically recognize uracil-DNA. We show that the best hit of pull-down on uracil-DNA is the protein product of the Drosophila melanogaster gene CG18410. This protein binds to both uracil-DNA and normal DNA but degrades only uracil-DNA; it is termed Uracil-DNA Degrading Factor (UDE). The protein has detectable homology only to a group of sequences present in genomes of pupating insects. It is under detection level in the embryo, most of the larval stages and in the imago, but is strongly upregulated right before pupation. In Schneider 2 cells, UDE mRNA is upregulated by ecdysone. UDE represents a new class of proteins that process uracil-DNA with potential involvement in metamorphosis.  相似文献   

10.
11.
Evidence is presented on two forms of uracil-DNA glycosylase (UDG1 and UDG2) that exist in human cells. We have developed an affinity technique to isolate uracil-DNA glycosylases from HeLa cells. This technique relies on the use of a uracil-DNA glycosylase inhibitor (Ugi) produced by theBacillus subtilisbacteriophage, PBS2. Affinity-purified preparations of uracil-DNA glycosylase, derived from total HeLa cell extracts, reveal a group of bands in the 36,000 molecular weight range and a single 30,000 molecular weight band when analyzed by SDS–PAGE and silver staining. In contrast, only the 30,000 molecular weight band is seen in HeLa mitochondrial preparations. Separation of HeLa cell nuclei from the postnuclear supernatant reveals that uracil-DNA glycosylase activity is evenly distributed between the nuclear compartment and the postnuclear components of the cell. Immunostaining of a nuclear extract with antisera to UDG1 indicates that the nuclear associated uracil-DNA glycosylase activity is not associated with the highly conserved uracil-DNA glycosylase, UDG1. With the use of Ugi-Sepharose affinity chromatography, we show that a second and distinct uracil-DNA glycosylase is associated with the nuclear compartment. Immunoblot analysis, utilizing antisera generated against UDG1, reveals that the 30,000 molecular weight protein and a protein in the 36,000 range share common epitopes. Cycloheximide treatment of HeLa cells indicates that upon inhibition of protein synthesis, the higher molecular weight species disappears and is apparently posttranslationally processed into a lower molecular weight form. This is substantiated by mitochondrial import studies which reveal thatin vitroexpressed UDG1 becomes resistant to trypsin treatment within 15 min of incubation with mitochondria. Within this time frame, a lower molecular weight form of uracil-DNA glycosylase appears and is associated with the mitochondria. Antibodies generated against peptides from specific regions of the cyclin-like uracil-DNA glycosylase (UDG2), demonstrate that this nuclear glycosylase is a phosphoprotein with a molecular weight in the range of 36,000. SDS–PAGE analysis of Ugi affinity-purified and immunoprecipitated UDG2 reveals two closely migrating phosphate-containing species, indicating that UDG2 either contains multiple phosphorylation sites (resulting in heterogeneous migration) or that two distinct forms of UDG2 exist in the cell. Cell staining of various cultured human cell lines corroborates the finding that UDG1 is largely excluded from the nucleus and that UDG2 resides mainly in the nucleus. Our results indicate that UDG1 is targeted to the mitochondria and undergoes proteolytic processing typical of resident mitochondrial proteins that are encoded by nuclear DNA. These results also indicate that the cyclin-like uracil-DNA glycosylase (UDG2) may be a likely candidate for the nuclear located base-excision repair enzyme.  相似文献   

12.
Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of the human uracil-DNA glycosylase shows a striking similarity to the other uracil-DNA glycosylases, ranging from 40.3 to 55.7% identical residues. The proteins of human and bacterial origin were unexpectedly found to be most closely related, 73.3% similarity when conservative amino acid substitutions were included. The similarity between the different uracil-DNA glycosylase genes is confined to several discrete boxes. These findings strongly indicate that uracil-DNA glycosylases from phylogenetically distant species are highly conserved.  相似文献   

13.
14.
An Escherichia coli uracil-DNA glycosylase-defective mutant (ung-1 thyA) was more resistant than its wild-type counterpart (ung+ thyA) to the killing effect of UV light when cultured in medium containing 5-bromouracil or 5-bromo-2'-deoxyuridine (BrdUrd). The phenotype of resistance to BrdUrd photosensitization and the uracil-DNA glycosylase deficiency appeared to be 100% cotransduced by P1 phage. During growth with BrdUrd, both strains exhibited similar growth rates and 5-bromouracil incorporation into DNA. The resistant phenotype of the ung-1 mutant was observed primarily during the stationary phase. In cells carrying 5-bromouracil-substituted DNA, mutations causing resistance to rifampin and valine were induced by UV irradiation at a higher frequency in the wild type than in the ung-1 mutant. This Ung-dependent UV mutagenesis required UmuC function. These results suggest that the action of the uracil-DNA glycosylase on UV-irradiated 5-bromouracil-substituted DNA produces lethal and mutagenic lesions. The BrdUrd photosensitization-resistant phenotype allowed us to develop a new, efficient method for enriching and screening ung mutants.  相似文献   

15.
Uracil DNA glycosylase (Ung (or UDG)) initiates the excision repair of an unusual base, uracil, in DNA. Ung is a highly conserved protein found in all organisms. Paradoxically, loss of this evolutionarily conserved enzyme has not been seen to result in severe growth phenotypes in the cellular life forms. In this study, we chose G+C-rich genome containing bacteria (Pseudomonas aeruginosa and Mycobacterium smegmatis) as model organisms to investigate the biological significance of ung. Ung deficiency was created either by expression of a highly specific inhibitor protein, Ugi, and/or by targeted disruption of the ung gene. We show that abrogation of Ung activity in P. aeruginosa and M. smegmatis confers upon them an increased mutator phenotype and sensitivity to reactive nitrogen intermediates generated by acidified nitrite. Also, in a mouse macrophage infection model, P. aeruginosa (Ung-) shows a significant decrease in its survival. Infections of the macrophages with M. smegmatis show an initial increase in the bacterial counts that remain for up to 48 h before a decline. Interestingly, abrogation of Ung activity in M. smegmatis results in nearly a total abolition of their multiplication and a much-decreased residency in macrophages stimulated with interferon gamma. These observations suggest Ung as a useful target to control growth of G+C-rich bacteria.  相似文献   

16.
17.
Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.  相似文献   

18.
19.
The uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 was cloned, and the effects of this inhibitor on Escherichia coli cells that contain uracil-DNA glycosylase activity were determined. A PBS2 genomic library was constructed by inserting EcoRI restriction fragments of PBS2 DNA into a plasmid pUC19 vector. The library was used to transform wild-type (ung+) E. coli, and the presence of the functional inhibitor gene was determined by screening for colonies that supported growth of M13mp19 phage containing uracil-DNA. A clone was identified that carried a 4.1-kilobase EcoRI DNA insert in the vector plasmid. Extracts of cells transformed with this recombinant plasmid lacked detectable uracil-DNA glycosylase activity and contained a protein that inhibited the activity of purified E. coli uracil-DNA glycosylase in vitro. The uracil-DNA glycosylase inhibitor expressed in these E. coli was partially purified and characterized as a heat-stable protein with a native molecular weight of about 18,000. Hence, we conclude that the PBS2 uracil-DNA glycosylase inhibitor gene was cloned and that the gene product has properties similar to those from PBS2-infected Bacillus subtilis cells. Inhibitor gene expression in E. coli resulted in (i) a weak mutator phenotype, (ii) a growth rate similar to that of E. coli containing pUC19 alone, (iii) a sensitivity to the antifolate drug aminopterin similar to that of cells lacking the inhibitor gene, and (iv) an increased resistance to the lethal effects of 5-fluoro-2'-deoxyuridine. These physiological properties are consistent with the phenotypes of other ung mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号