首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasive behavior is the pathological hallmark of malignant gliomas, being responsible for the failure of surgery, radiation, and chemotherapy. Matrix metalloproteinases (MMPs) are essential for proper ECM remodeling and invasion. The tumor and metastasis suppressor RECK protein regulates at least three members of the MMPs family: MMP-2, MMP-9, and MT1-MMP. In order to mimic the in vivo invasion process, A172 and T98G, respectively, non-invasive and invasive human glioblastoma cell lines, were cultured onto uncoated (control) or type I collagen gel-coated surface, and maintained for up to 7 days to allow establishment of the invasive process. We show that the collagen substrate causes decreased growth rates and morphological alterations correlated with the invasive phenotype. Electronic transmission microscopy of T98G cells revealed membrane invaginations resembling podosomes, which are typically found in cells in the process of crossing tissue boundaries, since they constitute sites of ECM degradation. Real time PCR revealed higher RECK mRNA expression in A172 cells, when compared to T98G cells and, also, in samples obtained from cultures where the invasive process was fully established. Interestingly, the collagen substrate increases RECK expression in A172 cells and the same tendency is displayed by T98G cells. MMPs-2 and -9 displayed higher levels of expression and activity in T98G cells, and their activities are also upregulated by collagen. Therefore, we suggest that: (1) RECK downregulation is critical for the invasiveness process displayed by T98G cells; (2) type 1 collagen could be employed to modulate RECK expression in glioblastoma cell lines. Since a positive correlation between RECK expression and patients survival has been noted in several types of tumors, our results may contribute to elucidate the complex mechanisms of malignant gliomas invasiveness.  相似文献   

2.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Corneal epithelial differentiation (primary stroma production) is dependent on the underlying extracellular matrix (ECM), for if the developing epithelium is enzymatically removed from the embryo, it fails to produce stroma in vitro unless it is cultured on collagenous ECM. We have previously shown that the stimulatory effect is mediated across Nucleopore filters in direct proportion to the surface area created by epithelial cell processes traversing the filter to contact ECM. Since collagenous ECM is insoluble under physiological conditions, transfilter stimulation of stroma production is probably due to an interaction of the epithelial cell surface with “inducer” ECM (killed lens capsule or purified collagen). We grew 5-day-old corneal epithelia on Nucleopore filters atop [3H]proline-labeled lens capsules and used both autoradiography and scintillation counting to show that radioactive collagen does not enter the epithelial cells in detectable amounts. We also show here that the stimulatory effect of collagen on collagen synthesis is not dependent on trapping of serum or binding of conditioned medium factors by ECM. Finally, we demonstrate that the stimulatory effect is reduced by removal of transfilter ECM after 6–12 hr in vitro. By 18–24 hr, however, cultured epithelium is less dependent on the substratum, probably because it has produced its own ECM. We conclude that: (1) the contact mediated collagen-cell surface interaction under study here requires the continuous presence of collagen in vivo and in vitro for maintenance of “stimulated” epithelial stroma synthesis; (2) the collagenous “inducer” interacts directly with epithelium rather than indirectly via trapped intermediates; (3) collagen acts at the epithelial cell surface without entering the cells.  相似文献   

4.
Mucus overproduction is an important feature of bronchial asthma. MUC5AC mucin is a major component of mucus and is overproduced in patients with asthma. Although regulation of MUC5AC production has been well investigated, its regulation through the signals from extracellular matrix (ECM) is less clear. In this study, we investigated whether the signals from ECM regulate MUC5AC production in the human lung epithelial cell line NCI-H292. We found that MUC5AC production is downregulated in NCI-H292 cells cultured on type-IV collagen, a major component of ECM, but shows no obvious changes when cultured on type-I collagen or fibronectin. In contrast, MUC5AC production was upregulated on laminin and on reconstituted basement membrane (Matrigel), a complex of ECM components. Antibody-mediated inhibition of integrin β1-subunit, a major receptor involved in the adherence of cells to type-IV collagen, upregulated the MUC5AC production in NCI-H292 cells, and also in the cells cultured on type-IV collagen. Although the major signaling pathway from integrins is via Src kinase activation, treatment of cells with PP2, a Src kinase inhibitor, did not recover the downregulation of MUC5AC on type-IV collagen. In contrast, on Matrigel, the inhibition of integrin β1-subunit did not abolish the upregulation of MUC5AC production, but PP2 reduced the upregulation. These results suggest that ECM and an integrin/Src pathway play an important role in the regulation of MUC5AC production in the cell line NCI-H292. The production of MUC5AC is downregulated on type-IV collagen through a Src-independent pathway. In contrast, MUC5AC is upregulated on Matrigel through a Src-dependent pathway in NCI-H292 cells.  相似文献   

5.
The extracellular matrix (ECM) influences a variety of cellular functions, including survival, adhesion molecule expression, differentiation, and migration. The ECM composition of the epithelial basement membrane is altered in asthmatics. In this study, we elucidate the major survival signals received by bronchial epithelial cells in vitro by studying the effects of a variety of ECM factors and soluble growth factors on bronchial epithelial cell survival. Our findings indicate that the insulin family of soluble growth factors provides important survival signals but also that adhesion to ECM is a crucial determinant of bronchial epithelial cell survival. In the BEAS-2B bronchial epithelial cell line, collagens I and IV, laminin, fibronectin, and vitronectin provide significant levels of protection from apoptosis. Tenascin-C has no effect, whereas elastin and collagen V increase apoptosis to above control levels. BEAS-2B cells secrete their own biosynthesized matrix (BSM), which also provides rescue from apoptosis. Protection by collagen I, fibronectin, and vitronectin was found to be via an RGD domain. Laminin-, collagen IV-, and BSM-mediated survival is not RGD dependent. Primary bronchial epithelial cells exhibit a similar pattern of apoptosis rescue to the BEAS-2B cell line, although we did not observe any vitronectin-mediated protection in the primary cells. These data indicate that bronchial epithelial cell survival is dependent both on soluble growth factors and on a variety of ECM-derived signals.  相似文献   

6.
GH3B6 cells, a rat pituitary tumor cell line, synthesize and secrete large amounts of prolactin (PRL) in vitro. In the present work, we evaluated the capacity of these cells to express extracellular matrix (ECM) components and receptors in vitro. The expression of laminin (LN), fibronectin (FN) and type IV collagen (CIV) was investigated by immunofluorescence assays. In comparison to PRL distribution, where around 50-70% of the cells contained PRL concentrated in the Golgi region, a variable immunolabeling for the three ECM components could be observed in the majority of GH3B6 cells. Importantly, this pattern was not modified when cells were cultured in the presence of 30 nM thyroliberin (TRH). The expression of the ECM receptors: alpha5beta1 (FN receptor), alpha6beta1 (LN receptor) and CD44 (hyaluronic acid receptor) could be demonstrated by cytofluorometric analysis. Using biochemical procedures, we analyzed the synthesis and secretion of glycosaminoglycans (GAGs). The cells synthesized and secreted mainly heparan sulfate (75%) with a minor amount of chondroitin sulfate/dermatan sulfate. In an attempt to evaluate the individual contribution of the ECM components to influence cell morphology and PRL distribution in vitro, GH3B6 cells were cultivated separately on LN, FN and CIV substrates. Under all conditions, it was possible to observe an increase of cell adherence to the substrate, accompanied with changes of cellular morphology, characterized by the appearance of cytoplasmatic processes. However, no changes on PRL distribution could be observed. Our results suggest that endocrine tumor cell lines are involved in synthesis of ECM components and receptors.  相似文献   

7.
Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l-lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l-lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation.  相似文献   

8.
Normal human epidermal melanocytes are attached to a basement membrane, a specialized form of extracellular matrix (ECM), located between the epithelium and underlying dermal tissues. To determine whether ECM influences pigmented cell behavior in vitro, human epidermal melanocytes and melanoma cells were cultured on uncoated or ECM-coated plastic culture surfaces, and a comparison was made between growth and function in the presence or absence of ECM. Melanocytes cultured on ECM-coated surfaces developed flatter and larger cell bodies and produced more melanin than melanocytes cultured on uncoated surfaces. In the presence of phorbol-myristate-acetate and cholera toxin, the rate of melanocyte replication was increased by ECM. In the absence of these mitogens, ECM significantly enhanced the adhesiveness of nonproliferating melanocytes. ECM had little or no effect on these parameters (morphology, tyrosinase activity, replication) in a pigmented human malignant melanoma cell line. These findings indicate that normal human epidermal pigment cells have the ability to recognize and respond to matrix signals, whereas this capacity appears to be absent in melanoma cells.  相似文献   

9.
In the embryo, fibroblasts migrating through extracellular matrices (ECM) are generally elongate in shape, exhibiting a leading pseudopodium with filopodial extensions, and a trailing cell process. Little is known about the mechanism of movement of embryonic cells in ECM, for studies of fibroblast locomotion in the past have been largely confined to observations of flattened cells grown on planar substrata. We confirm here that embryonic avian corneal fibroblasts migrating within hydrated collagen gels in vitro have the bipolar morphology of fibroblasts in vivo, and we show for the first time that highly flattened gerbil fibroma fibroblasts, grown as cell lines on planar substrata, can also respond to hydrated collagen gels by becoming elongate in shape. We demonstrate that the collagen-mediated change in cell shape is accompanied by dramatic rearrangement of the actin, α-actinin, and myosin components of the cytoskeleton. By immunofluorescence, the stress fibers of the flattened corneal fibroblasts grown on glass are seen to stain with antiactin, anti-α-actinin, and antimyosin, as has been reported for fibroma and other fibroblasts grown on glass. Stress fibers, adhesion plaques, and ruffles do not develop when the corneal or fibroma fibroblast is grown in ECM; these features seem to be a response to strong attachment of the cell underside to a planar substratum. When the fibroblasts are grown in ECM, antimyosin staining is distributed diffusely through the cytoplasm. Antiactin and anti-α-actinin stain the microfilamentous cell cortex strongly. We suggest that locomotion of the fibroblast in ECM is accompanied by adhesion of the cell to the collagen fibrils and may involve an interaction of the myosin-rich cytosol with the actin-rich filamentous cell cortex. Interestingly, the numerous filopodia that characterize the tips of motile pseudopodia of cells in ECM are very rich in actin and α-actinin, but seem to lack myosin; if filopodia use myosin to move, the interaction must be at a distance. Soluble collagen does not convert flattened fibroblasts on planar substrata to bipolar cells. Thus, the effect of collagen on the fibroblast cytoskeleton seems to depend on the presence of collagen fibrils in a gel surrounding the cell.  相似文献   

10.
The activation and differentiation of peripheral blood T cells (PBT) are known to correlate with increased surface expression and adhesive capacity of beta(1) integrins, which mediate adhesion to the extracellular matrix (ECM). However, little is known about the regulation of integrin expression, affinity, and avidity on tissue T cells after they are embedded in the interstitial ECM. In this study we show that tissue T cells, freshly isolated from their residence in the interstitial ECM of the intestinal lamina propria, express a distinct subset of functionally active integrins that contribute to enhanced adhesion to purified collagen, fibronectin, and cell-derived ECM when compared with freshly isolated, short term activated, and long term cultured PBT. Furthermore, integrin usage is distinct between circulating and tissue-derived T cells, in that lamina propria T cells prefer to bind to collagen, while PBT lymphoblasts choose fibronectin when presented with a complex, three-dimensional, cell-derived matrix. To identify the extrinsic factors that regulate the conversion from a nonadhesive PBT to highly adhesive tissue T cell, we demonstrate that activation of PBT in the presence of fibronectin or collagen rapidly generates a surface integrin expression profile, an integrin usage pattern, and adhesive capacity mirroring that of a tissue T cell. These results indicate that the tissue ECM microenvironment instructs newly arrived T cells for further interactions with the underlying matrix and thereby imprints them with a signature tissue adhesive phenotype.  相似文献   

11.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

12.
Epilysin (MMP-28) is a conserved member of the matrix metalloproteinase (MMP) family. It is expressed in various normal tissues, and induced in wounds and in developing and regenerating nerves. Epilysin induces TGF-β mediated epithelial to mesenchymal transition, but its other functions are largely unknown. We have characterized the localization of both catalytically active and mutated inactive, overexpressed epilysin in established epithelial cell lines. We found that epilysin was localized abundantly to the basolateral side of the cells and associated with the extracellular matrix (ECM) as verified by immunoblotting and confocal microscopy. Overexpression of epilysin in MDCK cells resulted in a drastic reduction of basolateral ECM, as observed by the disappearance of collagen type IV, laminin and fibronectin. Cultivation of epilysin expressing MDCK cells in defined serum free medium resulted in the restoration of these proteins to the ECM. The levels of fibronectin and collagen IV were, however, reduced in epilysin expressing cells under the serum free conditions, and degradation fragments of collagen IV were detected supporting the activation of proteolysis by epilysin. Epilysin was observed in its unprocessed 50 kDa active form in the ECM of MDCK cells under serum free conditions whereas in cells cultured in serum containing it was processed to the 48 kDa form. Current results indicate that epilysin associates with the basolateral ECM of cultured epithelial cells, where it plausibly plays a role in the regulation of matrix composition and turnover.  相似文献   

13.
Low density lipoproteins (LDL) are thought to play a major role in cardiovascular diseases such as atherosclerosis. Much remains to be done to understand the cellular effects of LDL and how the extracellular matrix (ECM) influences these effects. We found that LDL produced a dose dependent increase in vascular smooth muscle cell (SMC) proliferation. The ECM altered the proliferative response of SMC to LDL: on collagen I there was a 66% inhibition, endothelial cell derived-ECM a 2-fold increase, and collagen IV no difference in proliferation compared to paired controls. LDL affected SMC motility (cell area and shape factor) but the extent and direction of the effect depended on whether the cells were cultured on uncoated or coated dishes. LDL treated cultures had a 5-fold lower migration rate but net movement was not different, suggesting that LDL decreased SMC random movement. There was a dose-dependent accumulation of lipid by SMC incubated with LDL and, subsequently, cytoplasmic lipid droplets were observed. Cells cultured on uncoated plates showed an increased cholesterol content as a function of LDL concentration. In contrast, cells cultured on a collagen IV matrix showed no net change in cholesterol content over the range of LDL concentrations studied. Hence, the uptake of LDL cholesterol appears to be completely inhibited by this matrix. These studies indicate that the influence of LDL on several SMC parameters is modulated by ECM components.  相似文献   

14.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

15.
Previously, we have shown that embryonic corneal epithelia can interact with, and respond to, soluble extracellular matrices (ECM) (laminin, collagen, and fibronectin). The basal surface of epithelia isolated free of the underlying ECM can be seen to be disrupted by numerous blebs that sprout from this formerly smooth surface. Laminin, collagen, or fibronectin added to the culture medium cause the epithelium to reorganize its cytoskeleton and flatten its basal surface. We show here that ECM molecules at concentrations that reorganize epithelial cytoskeletal morphology also increase the amount of collagen produced by the epithelial cells. However, molecules that do not reorganize basal epithelial morphology (concanavalin A, heparin, bovine serum albumin) have no effect on collagen production. We also report that fluorescently labeled laminin, collagen, and fibronectin, when added to the medium surrounding isolated corneal epithelia, bind to and flatten the basal epithelial cell surface. The binding site on the basal surface is protease sensitive and is specific for each ECM molecule. These results are compatible with the idea that the basal epithelial plasmalemma possesses a diverse population of binding sites for ECM that link cell surface matrix to the cytoskeleton, causing a dramatic cytoskeletal reorganization which in turn results in enhanced production of collagen by the cells.  相似文献   

16.
Cancer progression (initiation, growth, invasion and metastasis) occurs through interactions between malignant cells and the surrounding tumor stromal cells. The tumor microenvironment is comprised of a variety of cell types, such as fibroblasts, immune cells, vascular endothelial cells, pericytes and bone-marrow-derived cells, embedded in the extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs) have a pro-tumorigenic role through the secretion of soluble factors, angiogenesis and ECM remodeling. The experimental models for cancer cell survival, proliferation, migration, and invasion have mostly relied on two-dimensional monocellular and monolayer tissue cultures or Boyden chamber assays. However, these experiments do not precisely reflect the physiological or pathological conditions in a diseased organ. To gain a better understanding of tumor stromal or tumor matrix interactions, multicellular and three-dimensional cultures provide more powerful tools for investigating intercellular communication and ECM-dependent modulation of cancer cell behavior. As a platform for this type of study, we present an experimental model in which cancer cells are cultured on collagen gels embedded with primary cultures of CAFs.  相似文献   

17.
The malignant behavior of cancers depends on the microenvironmental context. We investigated compositional alterations of the extracellular matrix (ECM) in pancreatic cancer, with special emphasis on the proteoglycans decorin, lumican, and versican. Compared with normal controls (n=18), marked overexpression of these proteoglycans was observed in pancreatic cancer tissues (n=30) by quantitative RT-PCR (p<0.0001). Immunohistochemistry revealed abundance of proteoglycans in the ECM of pancreatic cancer specimens, whereas tumor cells themselves were devoid of either decorin, lumican or versican. RT-PCR confirmed pancreatic stellate cells (PSCs) as the major source of these proteins. Interestingly, TGFbeta1 and conditioned medium derived from pancreatic cancer cell lines synergistically suppressed the expression of known anti-tumor factors decorin and lumican, but stimulated the expression of pro-metastatic factor versican in cultured PSCs. These findings indicate that malignant cells can actively influence the composition of the ECM through TGFbeta1 and other soluble factors, altering their microenvironment in a tumor-favorable way.  相似文献   

18.
《Cellular signalling》2014,26(9):2008-2015
Integrin-mediated attachment to extracellular matrix (ECM) is crucial for cancer progression. Malignant T cells such as acute lymphoblastic leukemia (T-ALL) express β1 integrins, which mediate their interactions with ECM. However, the role of these interactions in T-ALL malignancy is still poorly explored. In the present study, we investigated the effect of collagen; an abundant ECM, on T-ALL survival and migration. We found that collagen through α2β1 integrin promotes the survival of T-ALL cell lines in the absence of growth factors. T-ALL cell survival by collagen is associated with reduced caspase activation and maintenance of Mcl-1 levels. Collagen activated both ERK and p38 MAPKs but only MAPK/ERK was required for collagen-induced T-ALL survival. However, we found that α2β1 integrin promoted T-ALL migration via both ERK and p38. Together these data indicate that α2β1 integrin signaling can represent an important signaling pathway in T-ALL pathogenesis and suggest that its blockade could be beneficial in T-ALL treatment.  相似文献   

19.
邓云  于彬  覃文新 《生命科学》2009,(2):276-279
细胞外基质不仅维持着体内细胞微环境的稳定,还在细胞的正常生长、增殖以及细胞之间的信号传导中起着重要作用。肿瘤发生时,基质中的分子组分发生了改变,这些改变朝着有利于肿瘤细胞生长侵袭的方向发展。在这个过程中,细胞外基质的主要成分在合成和分解上发生巨大变化,胶原分子便是其中之一,胶原分子作为细胞外基质中的主要成分,对细胞的黏附、运动、迁移等活动起着重要作用。随着研究的深入,发现越来越多的胶原分子参与了肿瘤的发生发展。基质中还存在着一些分子,它们在结构上和胶原蛋白一样含有三螺旋胶原结构域,在肿瘤的发生发展过程中同样发挥着重要作用。本文就包括胶原分子在内的含有胶原结构的分子在肿瘤中的作用做一综述。  相似文献   

20.
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号