首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human HDL subfractions (HDL2, HDL3, or HDL separated by heparin affinity chromatography) were labelled either on their apolipoprotein moiety with 125I or on their sterols: unesterified [14C]cholesterol and [3H]cholesteryl linoleyl ether, a non-hydrolysable analog of esterified cholesterol. HDL subfractions were then treated with or without phospholipase A2 from Crotalus adamanteus in presence of albumin leading to a 72-82% phosphatidylcholine degradation. Control and treated HDL were reisolated and then addressed to cultured rat hepatocytes. (A) During incubations, unesterified [14C]cholesterol from HDL3 readily appeared in hepatocytes. The specific uptake of HDL esterified cholesterol calculated from [3H]cholesteryl ether was 2-4-times less important. Uptake of HDL cholesterol tended to saturate at 150-200 micrograms/ml HDL protein. A prior phospholipase treatment of HDL3 stimulated by 2-5-fold the uptake of [3H]cholesteryl ether, whereas the transfer of free [14C]cholesterol was minimally increased. The uptake of 3H/14C-labelled sterols from HDL2 was 2-3-times higher than from HDL3. (B) Parallel experiments were conducted with 125I-labelled HDL subfractions. At 37 degrees C, the specific uptake and degradation of HDL3 125I-apolipoprotein were about 2-fold enhanced following treatment of HDL3 with phospholipase A2. Uptakes of apolipoprotein and of esterified cholesterol were compared, indicating a preferential delivery of the sterol over apoprotein (X5). The dissociation was still more pronounced with phospholipase-treated HDL3. Competition experiments showed that 12-times more unlabelled HDL3 were required to half reduce the uptake of HDL3 [3H]cholesteryl ether than to impede similarly the HDL 125I-apolipoprotein recovered in cells. Uptake of 125I-labelled apolipoprotein from HDL2 was quantitatively comparable to that from HDL3. (C) Binding of 125I-HDL subfractions was followed at 4 degrees C. A specific binding was observed for HDL2 and HDL3, although kinetic parameters were quite different (KD of 9 and 25 micrograms/ml, respectively). Following phospholipolysis, both the specific and non-specific contributions to total binding were increased. Hence, hepatocytes take up more 125I-labelled apolipoprotein and 3H/14C-labelled sterols from lipolysed HDL than from unmodified particles. This is associated to changes in the binding characteristics.  相似文献   

2.
A comparison of effects of two hypocholesterolemic drugs--mevinolin and glycyrrhizinic acid, on cholesterol and bile acid metabolism in cultured rabbit hepatocytes has been carried out. The following parameters have been determined: i) cholesterol synthesis from [2-14C]acetate; ii) bile acid production from newly synthesized and [4-14C]-labeled HDL2 cholesterol, and, iii) total cholesterol efflux into the incubation medium Mevinolin (0.5 microgram/ml) inhibited [2-14C] acetate incorporation into cholesterol by more than 90%. Conversely, glycyrrhizinic acid did not influence cholesterol synthesis even when used at high (100 micrograms/ml) concentrations but stimulated the conversion of endogenous (by 37%) and exogenous (by 18%) cholesterol into bile acids and increased, in addition, the proportion of bile acids in the total sterol pool released from hepatocytes into the incubation medium. At the same time, mevinolin used at 0.5 microgram/ml decreased the bile acid production by endogenous (by 27%) and exogenous (by 40%) cholesterol. The data obtained suggest that glycyrrhizinic acid exerts hypocholesterolemic action by stimulation of cholesterol conversion into bile acids without any effect on cholesterol synthesis. As for mevinolin, it has a cholesterol-suppressing effect via a mechanism of cholesterol synthesis inhibition only.  相似文献   

3.
Human HDL (1.070-1.210), doubly labelled with 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol were incubated for 1–5 h with monolayer cultures of human endothelial cells. HDL were preincubated for 60–120 min the presence of albumin and with/without purified phospholipase A2 (control HDL, phospholipase A2 HDL) before dilution in the cell culture medium. Average phosphatidyl-choline (PC) degradation was 62.10% ± 2.57% (range 45–80%). A purified lipase /phospholipase A1 from guinea pig pancreas was used in some experiments (range of PC hydrolysis: 16–70%). (1) 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol appeared in cells during 0–5 h incubations. Trypsin treatment allowed a simple adsorption of HDL onto the cell surface to be avoided, and most of the 3H-labelled esterified cholesterol transferred to cells was hydrolysed. Cell uptake of radioactive cholesterol increased as a function of HDL concentration but no saturation was achieved at the highest lipoprotein concentration used (200 μg cholesterol/ml). Flux of 3H/14C-labelled unesterified cholesterol was related to the cell cholesterol content, suggesting that it might partly represent an exchange process. The cell cholesterol content was slightly increased after 5 h incubation with HDL (+16%). (2) Pretreatment of HDL with purified phospholipase A2 doubled on average the amount of cell recovered 3H-labelled esterified cholesterol, while the flux of 3H/14C-labelled unesterified cholesterol was enhanced by 15–25%. Both transfer and cell hydrolysis of 3H-labelled esterified cholesterol were increased. A stimulation was also observed using purified lipase/phospholipase A1, provided that a threshold phospholipid degradation was achieved (between 27 and 45%). (3) Endothelial cells were conditioned in different media so as to modulate their charge in cholesterol. The uptake of 3H-labelled esterified cholesterol was found to be significantly higher in cholesterol-enriched cells compared to the sterol-depleted state. Finally, movements of 3H-labelled esterified cholesterol from HDL to endothelial cells were essentially unaffected by cell density or by the presence of partially purified cholesterol ester transfer protein. The possible roles of the transfer of HDL esterified cholesterol to endothelial cells and its modulation by phospholipases are discussed.  相似文献   

4.
Primary cultures of rabbit hepatocytes were used to examine the effect of natural and synthetic antioxidants--polyhydroxynaphthoquinones (PHNQ) and alpha-tocopherol on cholesterol and bile acid synthesis. Histochrome, one of the PHNQ, slightly decreased cholesterol synthesis at concentrations 10-100 microM, whereas alpha-tocopherol stimulated cholesterol synthesis. After administration of histochrome or alpha-tocopherol into culture medium a significant stimulation of bile acid synthesis in dose-dependent manner was observed. The increase of bile acid secretion by histochrome in the presence of physiological concentration of HDL2 was found as well. Since histochrome in contrast to alpha-tocopherol enhanced accumulation of [14C] cholesterol of HDL2 in the hepatocytes, it was concluded that histochrome stimulated bile acid synthesis as a result of increased input of HDL2 cholesterol into hepatocytes. These data suggest that histochrome may exhibit a hypocholesterolemic effect by stimulation of bile acid synthesis and inhibition of cholesterol synthesis.  相似文献   

5.
Human high-density lipoproteins HDL2 (d = 1.068-1.125) and HDL3 (d = 1.125-1.210) doubly labelled with [3H]cholesterol/cholesteryl ester and with [acyl-14C]phosphatidylcholine were further incubated with phospholipases. Highly purified phospholipase A2 from Crotalus adamanteus allowed gradual degrees of lipolysis (30-90%) on both HDL2 and HDL3. Moderate phospholipid hydrolyses were achieved using hepatic triacylglycerol lipase, partially purified from post-heparin plasma. Moreover, the latter enzyme seemed to exert a lysophospholipase activity, acting on the 2-acyl-sn-glycero-3-phosphocholine generated. A purified sphingomyelinase C from Staphylococcus aureus was also used and completely hydrolysed HDL sphingomyelin. After incubation, doubly labelled HDL2/HDL3 were reisolated in their appropriate density interval. In the presence of albumin, which bound most of the lipolysis products, phospholipolysis induced a phospholipid depletion of the particles and a heterogeneous partition of all HDL2 constituents between the HDL2 and HDL3 density intervals. Radioactivity distributions correlated with mass movements. The 'HDL3-like' particles isolated after HDL2 lipolysis were twice as rich in cholesterol as plasma HDL3. No loss of apoprotein A1 was recorded due to phospholipolysis. In the absence of albumin, the density distributions of HDL2 or HDL3 constituents were unaffected by phospholipolysis, the products of lipolysis being reisolated with the stable particles. Control and treated HDL were also reisolated by equilibrium density gradient ultracentrifugation, gel chromatography or by gradient gel electrophoresis. Phospholipase treatment in the presence of albumin induced a shift of the HDL2 or HDL3 whole distribution towards particles of higher density and lower apparent size. Lipolysed HDL2 thus showed characteristics intermediate between those of HDL2 and HDL3. So, phospholipolysis may affect the physical parameters of HDL particles, but additional pathways such as cholesterol movements and apoprotein loss must be linked to achieve the HDL2----HDL3 interconversion.  相似文献   

6.
High density lipoprotein cholesterol represents a major source of biliary cholesterol. Secretory phospholipase A2 (sPLA2) is an acute phase enzyme mediating decreased plasma HDL cholesterol levels. Clinical studies reported a link between increased sPLA2 expression and the presence of cholesterol gallstones. The aim of our study was to investigate whether the overexpression of human sPLA2 in transgenic mice affects biliary cholesterol secretion and gallstone formation. Liver weight (P < 0.01) and hepatic cholesterol content (P < 0.01) were significantly increased in sPLA2 transgenic mice compared with controls as a result of increased scavenger receptor class B type I (SR-BI)-mediated hepatic selective uptake of HDL cholesterol (P < 0.01), whereas hepatic SR-BI expression remained unchanged. However, biliary cholesterol secretion as well as fecal neutral sterol and fecal bile salt excretion remained unchanged in sPLA2 transgenic mice. Furthermore, gallstone prevalence in response to a lithogenic diet was identical in both groups. These data demonstrate that i) increased flux of cholesterol from HDL into the liver via SR-BI as a result of phospholipase modification of the HDL particle translates neither into increased biliary and fecal sterol output nor into increased gallstone formation, and ii) increased sPLA2 expression in patients with cholesterol gallstones might be a consequence rather than the underlying cause of the disease.  相似文献   

7.
(1) Human HDL2 (d 1.070-1.125) and HDL3 (d 1.125-1.21) labelled with unesterified [14C]cholesterol, were incubated with a source of lecithin-cholesterol acyltransferase. For optimal activity, the reaction required the addition of albumin in excess, at least 3-times greater than the concentration of HDL-free cholesterol. Under such conditions, the reaction appeared saturable. HDL3 was found the most efficient substrate and the Vmax values expressed for 1.5 IU LCAT/ml and with an albumin/free cholesterol ratio of 3, were 8.3 nmol free cholesterol esterified/ml per h and 4.1 nmol/ml per h for HDL3 and HDL2, respectively. (2) HDL3 were modified in the presence of VLDL by inducing triacylglycerol lipolysis with a semipurified lipoprotein lipase from bovine milk. The newly formed HDL had gained free cholesterol and phospholipids, so that about 50% of these modified HDL, referred to as light-LIP-HDL3, were reisolated in the HDL2 density range. Light-LIP-HDL3 were enriched mostly in free cholesterol (+ 160%) and in phospholipid (+ 40%). Their reactivity towards LCAT was half-reduced compared to parent HDL3, which correlated well with a decrease in their phospholipid/free cholesterol molar ratio. Moreover, HDL3 artificially enriched in free cholesterol and exhibiting a comparable PL/FC behaved like lipolysis-modified HDL in their reactivity towards LCAT. (3) HDL3 were also modified by co-incubation with VLDL (post-VLDL-HDL3), or with VLDL and a source of lipid transfer protein (CET-HDL3). The latter treatment greatly affected the lipid composition of the core particle (-25% esterified cholesterol, +190% TG). In both cases, the moderate decreasing LCAT reactivity observed could be related to the phospholipid/free cholesterol ratio. Thus, like in artificial substrates, the lipid composition of the HDL surface may control the rate of LCAT-mediated cholesterol esterification.  相似文献   

8.
Cultured rat hepatocytes obtained by liver perfusion with collagenase in the presence of soybean trypsin inhibitor were used to examine the role of high density lipoproteins (HDL) in supplying cholesterol to the hepatocyte for bile acid synthesis. Within 6 hr of adding HDL (d 1.07-1.21 g/ml) obtained from rat serum there was a significant stimulation of bile acid synthesis and secretion that reached 2-fold after 24 hr. The stimulation by HDL occurred at normal plasma concentrations (i.e., 500 micrograms/ml) and showed further stimulation in a dose-dependent manner reaching a maximum stimulation of 2- to 2.5-fold. The stimulation of bile acid synthesis was dependent on the cholesteryl ester content of the HDL. Several lines of evidence show that the HDL is taken up by a receptor-mediated process dependent on apoE. These include: 1) at the same concentration (500 micrograms/ml) apoE-poor HDL (not retained by heparin affinity chromatography of HDL isolated from the plasma of rats fasted for 72 hr stimulated bile acid synthesis by 48%, whereas apoE-rich HDL stimulated bile acid synthesis by 110%; 2) reductive methylation totally blocked the stimulation of bile acid synthesis by HDL; 3) HDLC, which contained apoE as its major protein component, also maximally stimulated bile acid synthesis; and 4) human HDL, which contained no detectable apoE, failed to stimulate bile acid synthesis. Additional studies showed that apoE-enriched HDL and HDLC both inhibited cholesterol synthesis (determined by the incorporation of 3H2O) and caused a net accumulation of cholesteryl esters in hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.  相似文献   

10.
1. A method has been developed which enables the rat spleen to be loaded in vivo with [3H]cholesterol to a high specific radioactivity using cholesterol-labelled erythrocytes. The erythrocytes were shown to be rapidly degraded by the spleen and not released intact during subsequent perfusion. 2. When labelled spleens were perfused with whole blood or serum, lipoproteins in the high-density lipoprotein (HDL) range were shown to be the principal lipoprotein vehicles for the removal of cholesterol, the specific radioactivity of cholesterol being much greater in the HDL fractions than in other lipoproteins, particularly in the d 1.175-1.210 fraction. 3. The formation of [3H]cholesteryl ester was restricted to the major HDL fractions. 4. Experiments utilizing individual HDL fractions added to a basal perfusate indicated that HDL1 (d 1.050-1.085) was of less importance in the removal of cholesterol from the spleen than HDL subfractions of higher density. Also, a decrease in density of the lipoproteins was observed during perfusion, concurrent with uptake of cholesterol, especially in the d 1.085-1.125 subfraction. 5. When [3H]cholesterol-labelled spleens were perfused with whole blood, about half of the radioactivity released was detected in erythrocytes, indicating a rapid exchange or transport of cholesterol. Thus erythrocytes could play an important role in the transfer of unesterified cholesterol when the chemical potential gradient is favourable.  相似文献   

11.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

12.
The purpose of this study was to determine whether diosgenin suppresses cholesterol absorption in rats, and to examine relevant changes in cholesterol and bile acid metabolism. Diosgenin fed with the diet for 1 week inhibited cholesterol absorption as determined by the serum isotope ratio technique, as well as by measuring in the feces the amount of unabsorbed radioactivity from orally administered [3H]cholesterol. In addition, diosgenin suppressed the serum and liver uptake of radioactivity from co-administered [3H]cholesterol as well as the accumulation of liver cholesterol in the cholesterol-fed rat; diosgenin was substantially more active than cholestyramine or beta-sitosterol. In vitro, diosgenin had no effect on the activity of rat pancreatic esterase. Diosgenin decreased the elevated cholesterol in serum LDL and elevated cholesterol in the HDL fraction of cholesterol-fed rats; diosgenin had no effect on serum cholesterol in normocholesterolemic rats. In contrast to cholestyramine, diosgenin markedly increased neutral sterol excretion without altering bile acid excretion; in vitro, diosgenin had no effect on bile acid binding. Diosgenin treatment increased hepatic and intestinal cholesterol synthesis as well as the activity of hepatic HMG CoA reductase. This was accompanied by increased biliary concentration of cholesterol, but not of bile acids. Diosgenin had no effect on cholesterol synthesis when added to normal rat liver homogenates. It was concluded that diosgenin interferes with the absorption of cholesterol of both exogenous and endogenous origin; such interference is accompanied by derepressed, i.e., increased, rates of hepatic and intestinal cholesterol synthesis. The increased unabsorbed cholesterol together with enhanced secretion of cholesterol into bile resulted in increased excretion of neutral sterols without affecting the biliary and fecal excretion of bile acids.  相似文献   

13.
Binding of high density lipoprotein (HDL) to its receptor on cultured fibroblasts and aortic endothelial cells was previously shown to facilitate sterol efflux by initiation of translocation of intracellular sterol to the plasma membrane. After cholesterol-loaded human monocyte-derived macrophages were incubated with either [3H]mevalonolactone or lipoprotein-associated [3H]cholesteryl ester to radiolabel intracellular pools of sterol, incubation with HDL3 led to stimulation of 3H-labeled sterol translocation from intracellular sites to the cell surface which preceeded maximum 3H-labeled sterol efflux. A similar pattern was demonstrated for macrophages that were preloaded with cholesterol derived from either low density lipoprotein (LDL), acetyl-LDL, or phospholipase C-modified LDL. However, in macrophages that were not loaded with cholesterol, HDL3 stimulated net movement of 3H-labeled sterol from the plasma membrane into intracellular compartments, the opposite direction from that seen for cholesterol-loaded cells. A similar influx pattern was found in nonloaded macrophages and fibroblasts that were labeled with trace amounts of exogenous [3H]cholesterol. Cholesterol translocation from intracellular pools to the cell surface of cholesterol-loaded macrophages appeared to be stimulated by receptor binding of HDL, since chemical modification of HDL with tetranitromethane (TNM), which abolishes its receptor binding, reduced its ability to stimulate 3H-labeled sterol translocation and efflux. In nonloaded cells, however, the ability of HDL3 to stimulate sterol efflux and movement of sterol from the plasma membrane into intracellular pools was unaffected by TNM modification. Thus, binding of HDL to its receptor on cholesterol-loaded macrophages appears to promote translocation of intracellular cholesterol to the plasma membrane followed by cholesterol efflux into the medium. However, in nonloaded macrophages, HDL stimulates sterol movement from the plasma membrane into intracellular pools by a receptor-independent process.  相似文献   

14.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

15.
The availability of different sources of cholesterol for bile acid synthesis by cultured chick embryo hepatocytes was studied. Mevalonolactone was taken up by the cells and converted to cholesterol, cholesterol ester and tauroconjugates of bile acids. The addition of mevalonolactone had little effect on the conversion of endogenous cholesterol to taurocholic acid; however, taurochenodeoxycholic acid synthesis was stimulated. 25-30% of the cholesterol synthesized from mevalonolactone was converted to taurochenodeoxycholic, taurocholic and two so-far unidentified bile acids. All bile acids were secreted into the incubation medium. When cholesterol was added as mixed liposomes with phosphatidylcholine, it was taken up by the cells and converted to bile acids. At low concentrations of liposomes, the greater part of the cholesterol which was taken up by the cells was converted to bile acids. At higher concentrations, considerable amounts of cholesterol and cholesterol ester accumulated inside the cells. When mevalonolactone and cholesterol liposomes was added together, both substrates were used simultaneously for bile acids synthesis. HDL cholesterol was the best substrate tested, yielding large amounts of two, so-far, unidentified bile acids (possibly allo-bile acids) and smaller amounts of taurocholic and taurochenodeoxycholic acid. Addition of HDL suppressed the conversion of endogenous cholesterol to taurocholic acid; taurochenodeoxycholic acid synthesis, however, was stimulated.  相似文献   

16.
Gallstones develop when the secretion of cholesterol is elevated compared with the secretion of bile acids into bile. One of the risk factors for the formation of gallstones is pregnancy. Because the pregnancy-induced increase in hepatic cholesterol synthesis rates could play a critical role in the development of cholesterol stones, the aim of the present study was to determine whether stone formation, as assessed by the ratio of cholesterol to bile acids in bile, could be ablated by blocking the pregnancy-induced increase in hepatic sterol synthesis rates. Golden Syrian hamsters were fed either ground chow or chow supplemented with 0.5% cholesterol for 3 wk and studied in the nonpregnant state or in late gestation. In chow-fed animals, a 1.6-fold increase in the ratio of cholesterol to bile acids occurred simultaneously with a sevenfold increase in hepatic sterol synthesis rate and a ninefold increase in the amount of newly synthesized cholesterol secreted into the bile in late gestation. In the cholesterol-fed dams, an increase in the ratio of cholesterol to bile acids occurred even with the lack of induction of hepatic sterol synthesis rates during pregnancy. Thus it appears that the marked induction of hepatic sterol synthesis rates during gestation is not essential for the pregnancy-induced cholesterol saturation of bile when cholesterol is fed to animals.  相似文献   

17.
Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase-induced removal of cellular cholesterol.  相似文献   

18.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

19.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

20.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号