首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
A raw-starch-digesting amylase (RSDA) gene from a Cytophaga sp. was cloned and sequenced. The predicted protein product contained 519 amino acids and had high amino acid identity to alpha-amylases from three Bacillus species. Only one of the Bacillus alpha-amylases has raw-starch-digesting capability, however. The RSDA, expressed in Escherichia coli, had properties similar to those of the enzyme purified from the Cytophaga sp.  相似文献   

2.
3.
We have determined the nucleotide sequence of the Escherichia coli fus gene, which codes for elongation factor G. The protein product of the sequenced gene contains 703 amino acids, with a predicted molecular weight of 77,444. The fus gene shows the nonrandom pattern of codon usage typical of ribosomal proteins and other proteins synthesized at a high level. We have identified several potential promoter sequences within the gene. One of these sequences may correspond to the secondary promoter for expression of the downstream tufA gene (encoding elongation factor Tu) whose activity has been described previously (1,2). A comparison of the nucleotide and amino acid sequences of elongation factors G and Tu reveals a limited but significant homology between the two proteins within the 150 amino acid residues at their amino-terminal ends.  相似文献   

4.
The amino-terminal structure and the essential functional region of the cysB gene product of Escherichia coli K-12 were analyzed by the method of gene fusion. The translational start codon of the cysB gene was located by determining the amino-terminal sequence of a hybrid protein containing the first 31 amino acid residues of the CysB protein at the amino terminus of beta-galactosidase(LacZ protein). The fact that two other CysB'-'LacZ hybrid polypeptides expressed a normal CysB activity indicated that the functional region of the CysB protein was located within the first 215 amino acid residues of the total 324 amino acids deduced from the nucleotide sequence.  相似文献   

5.
The gene for the leucine-, isoleucine-, and valine-binding protein (LIVAT-BP) in Pseudomonas aeruginosa PAO was isolated, and its nucleotide sequence was determined. The gene consisted of 1,119 nucleotides specifying a protein of 373 amino acid residues. Determination of the N-terminal amino acid sequence of the LIVAT-BP purified from P. aeruginosa shock fluid suggested that the N-terminal 26 residues of the gene product are cleaved off posttranslationally, showing the characteristic features of procaryotic signal peptides. The amino acid composition of the mature product predicted from the nucleotide sequence was in good agreement with that of the purified LIVAT-BP. The plasmid carrying the LIVAT-BP gene restored the activity of the high-affinity branched-chain amino acid transport system (the leucine, isoleucine, valine [LIV-I] transport system) in the braC310 mutant of P. aeruginosa, confirming that braC is the structural gene for LIVAT-BP. The mutant LIVAT-BP lacking a 16-amino-acid peptide in the middle was found to be functional in the LIV-I transport system. LIVAT-BP showed extensive homology (51% identical) to the LIV- and leucine-specific-binding proteins of Escherichia coli K-12, which are coded for by the livJ and livK genes, respectively, suggesting that the role of the proteins in the LIV-I transport systems is analogous in both organisms.  相似文献   

6.
In the gap between two closely linked flagellar gene clusters on the Escherichia coli and Salmonella typhimurium chromosomes (at about 42 to 43 min on the E. coli map), we found an open reading frame whose sequence suggested that it encoded an alpha-amylase; the deduced amino acid sequences in the two species were 87% identical. The strongest similarities to other alpha-amylases were to the excreted liquefying alpha-amylases of bacilli, with > 40% amino acid identity; the N-terminal sequence of the mature bacillar protein (after signal peptide cleavage) aligned with the N-terminal sequence of the E. coli or S. typhimurium protein (without assuming signal peptide cleavage). Minicell experiments identified the product of the E. coli gene as a 56-kDa protein, in agreement with the size predicted from the sequence. The protein was retained by spheroplasts rather than being released with the periplasmic fraction; cells transformed with plasmids containing the gene did not digest extracellular starch unless they were lysed; and the protein, when overproduced, was found in the soluble fraction. We conclude that the protein is cytoplasmic, as predicted by its sequence. The purified protein rapidly digested amylose, starch, amylopectin, and maltodextrins of size G6 or larger; it also digested glycogen, but much more slowly. It was specific for the alpha-anomeric linkage, being unable to digest cellulose. The principal products of starch digestion included maltotriose and maltotetraose as well as maltose, verifying that the protein was an alpha-amylase rather than a beta-amylase. The newly discovered gene has been named amyA. The natural physiological role of the AmyA protein is not yet evident.  相似文献   

7.
An alpha-amylase gene from Bacillus sp. strain TS-23 was cloned and expressed by using its own promoter on the recombinant plasmid pTS917 in Escherichia coli. A cell fractionation experiment revealed that approximately 60% of the amylase activity was in the periplasmic space. Analysis and activity staining of the concentrated supernatant fraction by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a mol. wt of approximately 65,000. The amylase gene (amyA) consisted of an open reading frame of 1,845 bp encoding a protein of 613 amino acids with a calculated mol. wt of 69,543. The predicted amino acid sequence showed high homology with Bacillus species, E. coli and Salmonella typhimurium alpha-amylases. Deletion of 96 amino acids from the C-terminal portion of the amylase did not result in the loss of amylolytic activity. The truncated amylase, deletion of the first 50 amino acids from the N-terminus, was overexpressed in E. coli system and refolded to yield an activable enzyme.  相似文献   

8.
Burkholderia cepacia strain ST-200 produces an extracellular cholesterol oxidase which is stable and highly active in the presence of organic solvents. This cholesterol oxidase produces 6beta-hydroperoxycholest-4-en-3-one from cholesterol, with the consumption of two moles of O2 and the formation of one mole of H2O2. The structural gene encoding the cholesterol oxidase was cloned and sequenced. The primary translation product was predicted to be 582 amino acid residues. The mature product is composed of 539 amino acid residues and is preceded by a signal sequence of 43 residues. The cloned gene was expressed as an active product in Escherichia coli and the product was localized in the periplasmic space. The cholesterol oxidase produced from E. coli was purified to homogeneity from the periplasmic fraction. The purified enzyme was highly stable in the presence of various organic solvents or detergents, as compared with the commercially available cholesterol oxidases tested.  相似文献   

9.
The binding of salivary amylase to Streptococcus gordonii has previously been shown to involve a 20-kDa amylase-binding protein (AbpA). S. gordonii also releases an 82-kDa protein into the supernatant that binds amylase. To study this 82-kDa component, proteins were precipitated from bacterial culture supernatants by the addition of acetone or purified amylase. Precipitated proteins were separated by SDS-PAGE and transferred to a sequencing membrane. The P2 kDa band was then sequenced, yielding a 25 N-terminal amino acid sequence, CGFIFGRQLTADGSTMFGPTEDYP. Primers derived from this sequence were used in an inverse PCR strategy to clone the full-length gene from S. gordonii chromosomal DNA. An open reading frame of 1959 bp was noted that encoded a 652 amino acid protein having a predicted molecular mass of 80 kDa. The first 24 amino acid residues were consistent with a hydrophobic signal peptide, followed by a 25 amino acid N-terminal sequence that shared identity (24 of 25 residues) with the amino acid sequence of purified AbpB. The abpB gene from strains of S. gordonii was interrupted by allelic exchange with a 420-bp fragment of the abpB gene linked to an erythromycin cassette. The 82-kDa protein was not detected in supernatants from these mutants. These abpB mutants retained the ability to bind soluble amylase. Thus, AbpA, but not AbpB, appears sufficient to be the major receptor for amylase binding to the streptococcal surface. The role of AbpB in bacterial colonization remains to be elucidated.  相似文献   

10.
Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.  相似文献   

11.
The nucleotide sequence of the faeD gene of Escherichia coli and the amino acid sequence of its product is presented. The faeD product is an outer membrane protein required for transport of K88ab fimbrial subunits across the outer membrane. The protein is synthesized as a precursor containing a signal peptide, and the tentative mature protein comprises 777 amino acid residues. The distribution of amino acids in the faeD protein is similar to that of other outer membrane proteins; showing a fairly even distribution of charged residues and the absence of extensive hydrophobic stretches. Secondary structure predictions revealed a region of 250 amino acid residues which might be embedded in the outer membrane. The 5'-end of faeD is located within a region showing dyad symmetry. This region serves to couple translation of faeD to the translation of the gene preceding it (faeC). The 3'-end of faeD shows an overlap of 5 bases with the next gene (faeE).  相似文献   

12.
Erwinia carotovora Er produces three extra-cellular pectate lyases (PL I, II, and III). The gene for pectate lyase II (pelII) of E. carotovora Er was cloned and expressed both in Escherichia coli and E. carotovora Er. Localization experiments in E. coli showed that PL II was exclusively in the cytoplasmic space, while PL II was excreted into the culture medium. The complete nucleotides of the pelII gene were sequenced and found to include one open reading frame of 1122 bp coding for a protein of 374 amino acid residues. From comparison of the N-terminal amino acid sequence between the purified PL II and the deduced protein from the nucleotide sequence we reached the conclusion that the mature protein is composed of 352 amino acids with a calculated molecular weight of 38,169 and is preceded by a typical signal sequence of 22 amino acid residues. PL II had 90.1% and 82.9% homologies with PL I and PL III in amino acid sequence, respectively.  相似文献   

13.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two genes, coding for the HincII from Haemophilus influenzae Rc restriction-modification system, were cloned and expressed in Escherichia coli RR1. Their DNA sequences were determined. The HincII methylase (M.HincII) gene was 1,506 base pairs (bp) long, corresponding to a protein of 502 amino acid residues (Mr = 55,330). The HincII endonuclease (R.HincII) gene was 774 bp long, corresponding to a protein of 258 amino acid residues (Mr = 28,490). The amino acid residues predicted from the R.HincII and the N-terminal amino acid sequence of the enzyme found by analysis were identical. These methylase and endonuclease genes overlapped by 1 bp on the H. influenzae Rc chromosomal DNA. The clone, named E. coli RR1-Hinc, overproduced R.HincII. The R.HincII activity of this clone was 1,000-fold that from H. influenzae Rc. The amino acid sequence of M.HincII was compared with the sequences of four other adenine-specific type II methylases. Important homology was found between tne M.HincII and these other methylases.  相似文献   

18.
A Butyrivibrio fibrisolvens amylase gene was cloned and expressed by using its own promoter on the recombinant plasmid pBAMY100 in Escherichia coli. The amylase gene consisted of an open reading frame of 2,931 bp encoding a protein of 976 amino acids with a calculated Mr of 106,964. In E. coli(pBAMY100), more than 86% of the active amylase was located in the periplasm, and TnphoA fusion experiments showed that the enzyme had a functional signal peptide. The B. fibrisolvens amylase is a calcium metalloenzyme, and three conserved putative calcium-binding residues were identified. The amylase showed high sequence homology with other alpha-amylases in the three highly conserved regions which constitute the active centers. These and other conserved regions were located in the N-terminal half, and no similarity with any other amylase was detected in the remainder of the protein. Deletion of approximately 40% of the C-terminal portion of the amylase did not result in loss of amylolytic activity. The B. fibrisolvens amylase was identified as an endo-alpha-amylase by hydrolysis of the Phadebas amylase substrate, hydrolysis of gamma-cyclodextrin to maltotriose, maltose, and glucose and the characteristic shape of the blue value and reducing sugar curves. Maltotriose was the major initial hydrolysis product from starch, although extended incubation resulted in its hydrolysis to maltose and glucose.  相似文献   

19.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号