首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemann–Pick disease (NPD) is a lysosomal storage disorder that results from the deficiency of a lysosomal enzyme, acid sphingomyelinase. Niemann–Pick disease type A and B is caused by mutations in the sphingomyelin phosphodiesterase gene (SMPD1) coding for ASM. The aim of this study was to evaluate the spectrum of SMPD1 gene mutations in Turkish NPD patients and to study genotype–phenotype associations. We present a molecular analysis of 10 Turkish NPD type A/B patients. Four of the patients had type A and six had type B NPD. All mutant SMPD1 alleles were identified, including 5 different mutations, 1 of which was novel. These mutations included three missense mutations: c.409T>C (p.L137P), c.1262 A>G (p.H421R) and c.1552T>C (p.L549P), a common frameshift mutation in codon 189, identified in three patients, is caused by the deletion of the 567T, introducing a stop codon 65 amino acids downstream (p.P189fsX65), and a novel frameshift mutation c.1755delC (p.P585PfsX24) which was not reported previously.  相似文献   

2.
The deficient activity of the human lysosomal hydrolase, acid sphingomyelinase (ASM, EC 3.1.4.12), results in the neuronopathic (Type A) and non-neuronopathic (Type B) forms of Niemann-Pick disease (NPD). To investigate the genetic basis of the phenotypic heterogeneity in NPD, the molecular lesions in the ASM gene were determined from three unrelated NPD patients and evaluated by transient expression in COS-1 cells. A Type A NPD patient of Asian Indian ancestry (proband 1) was homoallelic for a T to A transversion in exon 2 of the ASM gene which predicted a premature stop at codon 261 of the ASM polypeptide (designated L261X). In contrast, an unrelated Type A patient of European ancestry (proband 2) was heteroallelic for a two-base (TT) deletion in exon 2 which caused a frame-shift mutation at ASM codon 178 (designated fsL178), leading to a premature stop at codon 190, and a G to A transition in exon 3 which caused a methionine to isoleucine substitution at codon 382 (designated M382I). Transient expression of the fsL178, L261X, and M382I mutations in COS-1 cells demonstrated that these lesions did not produce catalytically active ASM, consistent with the severe neuronopathic Type A NPD phenotype. In contrast, an unrelated Type B patient of European descent (proband 3) was heteroallelic for two missense mutations, a G to A transition in exon 2 which predicted a glycine to arginine substitution at ASM codon 242 (designated G242R), and an A to G transition in exon 3 which resulted in an asparagine to serine substitution at codon 383 (designated N383S). Interestingly, the G242R allele produced ASM activity in COS-1 cells at levels about 40% of that expressed by the normal allele, thereby explaining the mild Type B phenotype of proband 3 and the high residual activity (i.e. approximately 15% of normal) in cultured lymphoblasts. In contrast, the N383S allele did not produce catalytically active enzyme. None of these five ASM mutations was detected in over 60 other unrelated NPD patients analyzed, nor were these mutations found in over 100 normal ASM alleles. Thus, small deletions or nonsense mutations which trunctated the ASM polypeptide, or missense mutations that rendered the enzyme noncatalytic, resulted in Type A NPD disease, whereas a missense mutation that produced a defective enzyme with residual catalytic activity caused the milder nonneuronopathic Type B phenotype. These findings have facilitated genotype/phenotype correlations for this lysosomal storage disease and provided insights into the functional organization of the ASM polypeptide.  相似文献   

3.
The molecular diagnostics of 27 from 26 Ukrainian families has been performed. The common mutations in GBA gene (N370S, L444P and 84GG) accounted for up to 58% of all cases: mutation N370S was detected in 42.3% alleles, mutation L444P was observed in 15.4% alleles and mutation 84GG was not found at all. The other mutations were: P178S, W184R and Rec Nci I (in compounds with N370S) in the patients with nonneuronopathic form of Gaucher disease, and the genotypes G377S/c 999G --> A and D409H/R120W/G202R were detected in patients with chronic neuronopathic form of Gaucher disease. The data analysis of the genotype and disease progression in the patients allows confirming the known genotype-phenotype correlation.  相似文献   

4.
5.
Gaucher disease results from the inherited deficiency of the enzyme glucocerebrosidase (EC 3.2.1.45). Although >100 mutations in the gene for human glucocerebrosidase have been described, most genotype-phenotype studies have focused upon screening for a few common mutations. In this study, we used several approaches-including direct sequencing, Southern blotting, long-template PCR, restriction digestions, and the amplification refraction mutation system (ARMS)-to genotype 128 patients with type 1 Gaucher disease (64 of Ashkenazi Jewish ancestry and 64 of non-Jewish extraction) and 24 patients with type 3 Gaucher disease. More than 97% of the mutant alleles were identified. Fourteen novel mutations (A90T, N117D, T134I, Y135X, R170C, W184R, A190T, Y304X, A341T, D399Y, c.153-154insTACAGC, c.203-204insC, c.222-224delTAC, and c.1122-1123insTG) and many rare mutations were detected. Recombinant alleles were found in 19% of the patients. Although 93% of the mutant alleles in our Ashkenazi Jewish type 1 patients were N370S, c.84-85insG, IVS2+1G-->A or L444P, these four mutations accounted for only 49% of mutant alleles in the non-Jewish type 1 patients. Genotype-phenotype correlations were attempted. Homozygosity or heterozygosity for N370S resulted in type 1 Gaucher disease, whereas homozygosity for L444P was associated with type 3. Genotype L444P/recombinant allele resulted in type 2 Gaucher disease, and homozygosity for a recombinant allele was associated with perinatal lethal disease. The phenotypic consequences of other mutations, particularly R463C, were more inconsistent. Our results demonstrate a high rate of mutation detection, a large number of novel and rare mutations, and an accurate assessment of the prevalence of recombinant alleles. Although some genotype-phenotype correlations do exist, other genetic and environmental factors must also contribute to the phenotypes encountered, and we caution against relying solely upon genotype for prognostic or therapeutic judgements.  相似文献   

6.
The lysosomal storage disorder, mucopolysaccharidosis type I (MPS I), is caused by a deficiency of the enzyme alpha-L-iduronidase, which is involved in the breakdown of dermatan and heparan sulphates. There are three clinical phenotypes, ranging from the Hurler form characterised by skeletal abnormalities, hepatosplenomegaly and severe mental retardation, to the milder Scheie phenotype where there is aortic valve disease, corneal clouding, limited skeletal problems, but no mental retardation. In this study, 85 MPS I families (73 Hurler, 5 Hurler/Scheie, 7 Scheie) were screened for 9 known mutations (Q70X, A75T, 474-2a>g, L218P, A327P, W402X, P533R, R89Q, 678-7g>a). W402X was the most frequent mutation in our population (45.3%) and Q70X was the second most frequent (15.9%). In 30 families, either one or both of the mutations were not identified, which accounted for 25.9% of the total alleles. Therefore, all 14 exons of the alpha-L-iduronidase gene were screened in these patients and 23 different sequence changes were found, 17 of which were previously unknown. The novel sequence changes include 4 deletions (153delC, 628del5, 740delC, 747delG), 5 nonsense mutations (Q60X, Y167X, Q400X, R619X, R628X), 6 missense mutations (C205Y, G208V, H240R, A319V, P496R, S633L), a splice site mutation (IVS12+5g>a), and a rare polymorphism (A591T). The polymorphism and novel missense mutations were transiently expressed in COS-7 cells and all of them except the polymorphism showed complete loss of enzyme activity. In total, 165 of the 170 mutant alleles were identified in this study and despite the high frequency of W402X and Q70X, the identification of many novel mutations unique to individual families further highlights the genetic heterogeneity of MPS I.  相似文献   

7.
The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH) gene was investigated in 59 children with phenylketonuria (PKU) and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%), followed by Ivs7 + 2 T > A (5.1%) and T278I (2.5%). G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.  相似文献   

8.
Phenylketonuria mutations in Germany   总被引:9,自引:0,他引:9  
We report the spectrum of mutations and associated modified haplotypes in patients with phenylketonuria living in Germany. A total of 546 independent alleles was investigated, including 411 of German and 65 of Turkish descent. Mutations were identified for 535 PKU alleles (98%) and there were 91 different mutations. The most common mutation was R408W on 22% of alleles. Two mutations, IVS12+1G→A and IVS10–11G→A accounted for just under 10% of alleles, whereas the remaining mutations were found at relative frequencies of 6% or less; 43 mutations were observed once only. IVS10–11G→A was the most common mutation (38% of alleles) in the subgroup of patients of Turkish descent. Modified haplotypes were determined from the analysis of four silent mutations, three diallelic restriction fragment length polymorphisms, a variable number of tandem repeats minisatellite and a short tandem repeat microsatellite in the phenylalanine hydroxylase gene, showing that a considerable proportion of mutations must have recurred in independent founders; other mutations may have changed chromosomal haplotype backgrounds by gene conversion. The spectrum of PKU mutations in Germany reflects the history of a heterogenous Central European population living at the crossroads of migration throughout the centuries. Received: 11 January 1999 / Accepted: 11 March 1999  相似文献   

9.
We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations--including the most common, delta F508--strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with delta F508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as delta F508, delta I507, Q493X, G542X, R553X, W1282X, 621 + 1G----T, 1717-1G----A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.  相似文献   

10.
In order to determine the spectrum of cystic fibrosis (CF) mutations in the Turkish population, a complete coding region of the cystic fibrosis transmembrane conductance regulator (CFTR) gene including exon-intron boundaries, on 122 unrelated CF chromosomes from 73 Turkish CF families was analysed by denaturing gradient gel electrophoresis and multiplex heteroduplex analysis on MDE gel matrix. In addition to 15 previously reported mutations and 12 polymorphisms, three novel mutations, namely 3172delAC, P1013L and M1028I, were detected. ΔF508 was found to be present on 18.8% of CF chromosomes. The second most common mutation was 1677delTA, with a frequency of 7.3%, followed by G542X and 2183AA→G mutations, with frequencies of 4.9%. These four most common mutations in Turkish CF population account for approximately 36% of mutations. This study could only detect 52.5% of disease-causing mutations in this population; 47.5% of CF alleles remain to be identified, reflecting the high molecular heterogeneity of the Turkish population. Received: 16 June 1997 / Accepted: 18 September 1997  相似文献   

11.
In the present study, 1000 patients with clinical suspicion of FMF were retrospectively reviewed to determine the spectrum of MEFV gene mutations by using DNA sequence analysis between September, 2008 and April, 2012. Sixteen different mutations and 55 different genotypes were detected in 618 of 1000 patients. Among 16 different mutations, R202Q (21.35%) was the most frequently observed mutation; followed by E148Q (8.85%), M694V (7.95%), M680I (2.40%), V726A (1.85%), M694I (0.95%), A744S (0.80%), R761H (0.55%), P283L (0.35%), K695R (0.20%), E230K (0.15%), L110P (0.10%), I247V (0.05%), G196W (0.05%) and G304R (0.05%). In the present study, a novel missense mutation (I247V) and a silent variant (G150G) were identified in the MEFV gene. On the other hand, P238L, G632A and G304R mutations are the first cases reported from Turkey. Our results indicated that MEFV mutations are highly heterogeneous in our study population as in other regions of Turkey and mutation screening techniques such as PCR-RFLP, amplification refractory mutation system or reverse hybridization do not adequately detect uncommon or novel mutations. Therefore, it was proven that sequence analysis of the MEFV gene could be useful for detection of rare or unknown mutations.  相似文献   

12.
A molecular-genetics investigation is conducted on 27 patients from 26 families. Common mutations in the GBA gene (N370S, L444P, and 84GG) are studied. The overall frequency of the common mutations is nearly 58%, with the percentage of alleles that carry the N370S mutation close to 42.3% and the proportion that carry the L444P mutation, 15.4%. No allele containing the 84GG mutation was found. Besides other mutations, the rare mutations P178S, W184R, and Rec Nci I (together with N370S) were also found in the GBA gene in patients with the nonneuronopathic form of the disease, along with the genotypes G377S/c 999GA and D409H/R 120W/G202R in patients with the chronic neuronopathic form. An analysis of the correlation between the genotype and the course of the disease in the patients showed that the genotype-phenotype correlations were close to that described for European populations.  相似文献   

13.
Glycogen storage disease type Ia (GSD Ia) is an autosomal recessive disorder caused by mutations in the G6PC gene encoding glucose-6-phosphatase (G6Pase), a key enzyme for the maintenance of glucose homeostasis. Molecular analysis is a reliable and accurate way of diagnosing GSD Ia without to need for invasive liver biopsies for enzyme tests. In some ethnic groups and geographic regions, allelic homogeneity was detected in GSD Ia. In the present study, the most common 12 mutations in the world were searched by microelectronic array technology, a new method, in 27 Turkish patients diagnosed for GSD Ia and the relation between detected mutations and clinical and laboratory findings was investigated. Mutations causing the disease were detected in 45 (83.3%) of 54 alleles screened in the cases with GSD Ia. Allelic frequency of mutations (p.R83C, p.G270V, p.G188R, p.W77R) looked for were found as 68.5%, 7.4%, 3.7%, and 3.7%, respectively. p.G188R mutation was detected for the first time in a patient of Turkish origin. Eight (p.R170Q, p.Q347X, c.79delC, c.380_381insTA, p.D38V, p.W63X, c.648G>T, c.979_981delTTC) of 12 mutations looked for were coincided in none of the patients. The patient with homozygous p.W77R mutation seemed to present milder clinical and laboratory findings, compared to other patients. In conclusion, we suggest that microarray technology, which allows rapid analysis of frequently detected mutations and has considerably lower costs than other methods, can be successfully used in diagnosis of GSD Ia in populations with allelic homogeneity, such as patients of Turkish origin, instead of screening the whole gene.  相似文献   

14.
We describe a simple and technically feasible method for mutation screening of the phenylalanine hydroxylase (PAH) gene and its application to Japanese and Chinese patients with hyperphenylalaninemia. The strategy is based on the identification of a nucleotide substitution by restriction enzyme analysis, coupled with PCR and direct sequencing of exon 7 of the PAH gene. Because the detection of various mutations can proceed simultaneously using the same technique, it is quite rapid and reproducible, making it possible to perform effective molecular diagnosis and carrier screening in most laboratories. Using this procedure, we found that the most common molecular defects were R413P in Hokkaido, Japan (35 %) and R243Q in Heilongjiang, China (50%). R111X, IVS4nt-1, and five mutations in exon 7 (R241C, R243Q, R252W, A259T, and S273P) accounted for 55% of phenylketonuria (PKU) alleles in Hokkaido. In Heilongjiang, the R111X, Y356X, and R408W mutations accounted for 35% of PKU alleles. Clinically, homozygotes or compound heterozygotes of null alleles, which express nonfunctional enzyme activity, were all associated with classic PKU. On the other hand, patients heterozygous for the R241C allele had a benign phenotype of mild hyperphenylalaninemia. The DNA diagnosis in early infancy can predict various PKU phenotypes, and can prove useful in decision-making concerning dietary therapy.  相似文献   

15.
AIMS: To obtain more insight into the variability of the CFTR mutations found in immigrant cystic fibrosis (CF) patients who are living in Europe now, and to estimate the test sensitivity of different frequently used methods of DNA analysis to detect CF carriers or patients among these Turkish or North African immigrants. METHODS: A survey among 373 European CF centers asking which CFTR mutations had been found in Turkish and North African CF patients. RESULTS: 31 and 26 different mutations were reported in Turkish and North African patients, identifying 64.2% (113/176) and 87.4% (118/135) alleles, respectively (p < 0.001). The mean sensitivity (detection rate) of three most common CFTR mutation panels to detect these mutations differed between Turkish and North African people, 44.9% (79/176) versus 69.6% (94/135) (p < 0.001), and can be increased to 57.4% (101/176) and 79.3% (107/135) (p < 0.001), respectively, by expanding these panels with 13 mutations which have been found on two or more alleles. CONCLUSION: 35.8% and 12.6%, respectively, of CF alleles in Turkish and North African patients living in Europe now had not been identified. Among these populations, the test sensitivity of common CFTR mutation panels is insufficient for use in screening programs in Europe, even after expansion with frequent Turkish and North African mutations. This raises questions about whether and how to implement CF carrier and neonatal screening in a multiethnic society.  相似文献   

16.
The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewish patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so far among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS + 1 mutation constituted 2.26% of the disease alleles among Jewish patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated "RecNciI" and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations--D409H and R463C--was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, was 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection.  相似文献   

17.
Autoimmune polyendocrinopathy type 1 (APS1) is an autosomal recessive disorder characterized by autoimmune hypoparathyroidism, autoimmune adrenocortical failure, and mucocutaneous candidiasis. Recently, an autoimmune regulator gene (AIRE-1), which is located on chromosome 21q22.3, has been identified, and mutations in European kindreds with APS1 have been described. We used SSCP analysis and direct DNA sequencing to screen the entire 1,635-bp coding region of AIRE-1 in 12 British families with APS1. A 13-bp deletion (964del13) was found to account for 17 of the 24 possible mutant AIRE-1 alleles, in our kindreds. This mutation was found to occur de novo in one affected subject. A common haplotype spanning the AIRE-1 locus was found in chromosomes that carried the 964del13 mutation, suggesting a founder effect in our population. One of 576 normal subjects was also a heterozygous carrier of the 964del13 mutation. Six other point mutations were found in AIRE-1, including two 1-bp deletions, three missense mutations (R15L, L28P, and Y90C), and a nonsense mutation (R257*). The high frequency of the 964del13 allele and the clustering of the other AIRE-1 mutations may allow rapid molecular screening for APS1 in British kindreds. Furthermore, the prevalence of the 964del13 AIRE-1 mutation may have implications in the pathogenesis of the more common autoimmune endocrinopathies in our population.  相似文献   

18.
We report the molecular characterization of two novel galactosemia mutations that exhibit different molecular phenotypes. Both are of the missense type with low or no residual enzyme activity. The R148W mutation results in an unstable protein, although messenger RNA is still produced. In contrast, the L195P mutation produces stable but inactive immunoreactive protein. The R148W mutation alters an amino acid that is not evolutionarily conserved, while the L195P mutation affects a well-conserved residue nine amino acids down-stream from the putative active site nucleophile. These mutations provide evidence that different mechanisms can result in galactosemia: destabilizing mutations in any given area of the protein and missense mutations in conserved domains of the enzyme resulting in low or no activity. These two mutant alleles represent the fifth and sixth galactosemia mutations and confirm the hypothesis that galactosemia results from a multiplicity of mutations at the molecular level.  相似文献   

19.
Loke KY  Lee YS  Lee WW  Poh LK 《Hormone research》2001,55(4):179-184
BACKGROUND: Congenital adrenal hyperplasia arising from 21-hydroxylase deficiency is associated with mutations in the CYP21 gene on chromosome 6p. This is the first report on the mutational spectrum of the CYP21 gene in Singapore. METHODS: To catalogue the mutations, ten exons of the CYP21 gene from 28 Singaporean patients were analyzed by PCR amplification and direct sequencing. RESULTS: Common mutations in descending order were the intron 2 splice site mutation (32.7% of the alleles), the I172N mutation (23.1% of the alleles), and the R356W mutation (19.2% of the alleles). Two potentially novel mutations were discovered: (1) duplication of 111 bp from codon 21 to codon 57 (exon 1) and (2) missense mutation (L261P, exon 7). There was generally a good genotype-phenotype correlation, allowing accurate prediction of the disease severity.  相似文献   

20.
Clinical signs and symptoms of Gaucher disease are more severe in Japanese than in Jewish and other non-Japanese patients. A higher percentage of bone crises and splenectomy was demonstrated by Japanese patients, and there were five fatalities among patients with type 1 Gaucher disease. Additionally, neonatal Gaucher disease, clinically characterized by hydrops foetalis, was observed. Japanese patients with type 2 and type 3 disease also demonstrate clinical heterogeneity. About 100 alleles of patients with Japanese Gaucher disease were examined for genotype determination with the PCR and SSCP methods. About 18 different mutations, including several novel mutations in Japanese patients, were identified. The most common mutations in Japanese patients were 1448C(L444P), accounting for 41 (41%) of alleles. The second most prevalent mutation was 754A(F2131), accounting for 14 (14%) of alleles. Other alleles identified included the 1324C, IVS2 and other mutations. Unidentified alleles comprised 16% of the total number of alleles studied. To date, neither the 1226G (N370S) nor the 84GG mutation has been identified in the Japanese population, although these mutations account for about 70% and 10% of the mutations in Jewish and other non-Japanese populations, respectively. The phenotype-genotype correlation in Japanese patients is more complex compared with that of the Jewish population. In Japanese patients, the 1448C mutation, in either heteroallelic or homoallelic forms, exhibits both neurological and non-neurological phenotypes. Japanese patients with the 754A mutation also exhibit both neuronopathic and non-neuronopathic disease. On the other hand, patients with the D409H mutation show only type 3 neurological disease, and those with the 1447–1466 del 20 ins TG mutation have the severe, neonatal neurological form of Gaucher disease. The 1503T allele was present only in patients with type 1 non-neurological disease. However, since this correlation was observed only in young patients, we do not as yet know the final phenotypic outcome of this mutation. Probably, Japanese patients with Gaucher disease have few mutations that exhibit non-neurological signs and symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号