首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Pea encodes eukaryotic translation initiation factor eIF4E (eIF4ES), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4ER) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.

Methodology/Principal Findings

To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4ES bound to m7GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m7GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4ER and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m7GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation.

Conclusions/Significance

The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4E alleles with the potential to convey novel virus resistance phenotypes.  相似文献   

2.
The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana–potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.  相似文献   

3.
Potyviruses are a common threat for snap bean production in Bulgaria. During virus surveys of bean plots in the south central region, we identified an isolate of Clover yellow vein virus (ClYVV), designated ClYVV 11B, by indirect ELISA and RT‐PCR causing severe mosaic symptoms and systemic necrosis. Indirect and direct ELISA using ClYVV antisera differentiated the ClYVV isolate from Bean yellow mosaic virus (BYMV), but serological analysis could not distinguish the Bulgarian isolate ClYVV 11B from an Italian ClYVV isolate used as a reference (ClYVV 505/7). RT‐PCR analyses with specific primers revealed that both isolates were ClYVV. Sequence analysis of an 800 bp fragment corresponding to the coat protein coding region showed 94% identity at the nucleotide level between the two isolates. Phylogenetic analyses of aligned nucleotide sequences available in the database confirmed the existence of two groups of isolates, but ClYVV 11B and ClYVV505/7 belonged to the same group. We compared the virulence of both isolates on a set of differential cultivars and 19 bean breeding lines resistant to Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV): Bulgarian isolate ClYVV 11B was able to infect systemically all tested bean differential cultivars and breeding lines including those with genotypes Ibc3 and Ibc22; Italian isolate ClYVV 505/7 was not able to infect systemically some differentials with genotypes bc‐ubc1, bc‐ubc22, bc‐ubc2bc3, Ibc12, Ibc22, Ibc3. The role of bc3 gene as a source of resistance to potyviruses is discussed.  相似文献   

4.
In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus.  相似文献   

5.

Key message

Unlocking allelic diversity of the bymovirus resistance gene rym11 located on proximal barley chromosome 4HL and diagnostic markers provides the basis for precision breeding for BaMMV/BaYMV resistance.

Abstract

The recessive resistance gene rym11 on barley chromosome 4HL confers broad-spectrum and complete resistance to all virulent European isolates of Barley mild mosaic virus and Barley yellow mosaic virus (BaMMV/BaYMV). As previously reported, rym11-based resistance is conferred by a series of alleles of naturally occurring deletions in the gene HvPDIL5-1, encoding a protein disulfide isomerase-like protein. Here, a novel resistance-conferring allele of rym11 is reported that, in contrast to previously identified resistance-conferring variants of the gene HvPDIL5-1, carries a single non-synonymous amino acid substitution. Allelism was confirmed by crossing to genotypes carrying previously known rym11 alleles. Crossing rym11 genotypes with a cultivar carrying the recessive resistance gene rym1, which was reported to reside on the same chromosome arm 4HL like rym11, revealed allelism of both loci. This allelic state was confirmed by re-sequencing HvPDIL5-1 in the rym1 genotype, detecting the haplotype of the rym11-d allele. Diagnostic PCR-based markers were established to differentiate all seven resistance-conferring alleles of the rym11 locus providing precise tools for marker-assisted selection (MAS) of rym11 in barley breeding.  相似文献   

6.

Key message

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Abstract

Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.
  相似文献   

7.
We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris Black Turtle Soup 1. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.  相似文献   

8.
Allele mining is a method used to find undiscovered natural variations or induced mutations in a plant, and has become increasingly important as more genomic information is available in plants. A high-throughput method is required to facilitate the identification of novel alleles in a large number of samples. In this paper we describe the application of a high-resolution melting (HRM) method to detect natural variations and ethyl methane sulfonate (EMS)-induced mutations in Capsicum. We have scanned single polymorphic mutations in the first exon of the eIF4E gene, wherein the mutations confer resistance to potyviruses. Sixteen allelic variations out of 248 germplasm collections were identified using HRM analysis, and one accession carrying an allelic variation (pvrHRM1 13 ) was confirmed to be resistant to the TEV-HAT strain. In addition, five single polymorphic mutations in the eIF4E gene were identified in an EMS-induced mutant population. These results demonstrate that HRM allows for the rapid identification of new allelic variants in both natural and artificial mutant populations.  相似文献   

9.
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus‐resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss‐of‐function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR‐nCas9‐cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single‐point mutation through C‐to‐G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome‐editing technologies offers a feasible solution for engineering transgene‐free genetic resistance in plants, even across species barriers.  相似文献   

10.
Anthracnose (ANT) and angular leaf spot (ALS) are devastating diseases of common bean (Phaseolus vulgaris L.). Ouro Negro is a highly productive common bean cultivar, which contains the Co-10 and Phg-ON genes for resistance to ANT and ALS, respectively. In this study, we performed a genetic co-segregation analysis of resistance to ANT and ALS using an F2 population from the Rudá × Ouro Negro cross and the F2:3 families from the AND 277 × Ouro Negro cross. Ouro Negro is resistant to races 7 and 73 of the ANT and race 63-39 of the ALS pathogens. Conversely, cultivars AND 277 and Rudá are susceptible to races 7 and 73 of ANT, respectively. Both cultivars are susceptible to race 63-39 of ALS. Co-segregation analysis revealed that Co-10 and Phg-ON were inherited together, conferring resistance to races 7 and 73 of ANT and race 63-39 of ALS. The Co-10 and Phg-ON genes were co-segregated and were tightly linked at a distance of 0.0 cM on chromosome Pv04. The molecular marker g2303 was linked to Co-10 and Phg-ON at a distance of 0.0 cM. Because of their physical linkage in a cis configuration, the Co-10 and Phg-ON resistance alleles are inherited together and can be monitored with great efficiency using g2303. The close linkage between the Co-10 and Phg-ON genes and prior evidence are consistent with the existence of a resistance gene cluster at one end of chromosome Pv04, which also contains the Co-3 locus and ANT resistance quantitative trait loci. These results will be very useful for breeding programs aimed at developing bean cultivars with ANT and ALS resistance using marker-assisted selection.  相似文献   

11.
Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 1, and pvr1 2. These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.  相似文献   

12.
A new set of EST-SSR markers were developed and employed to analyze the genetic diversity and population structure of Phaseolus vulgaris in China. A total of 2452 microsatellites were identified in 2144 unigenes assembled from P. vulgaris ESTs, indicating that merely 6.9% of the 30,952 unigene sequences contained SSRs. Seventeen of 153 randomly designed EST-SSR primer pairs successfully amplified polymorphic products in 31 landraces from six major production provinces of China, with the mean number of alleles per locus of 2.700 and polymorphism information content of 0.378. The observed and expected heterozygosity ranged from 0.100 to 0.954 and 0.081 to 0.558, respectively. Using these markers, both an unrooted neighbor-joining tree and principal coordinates analysis showed that almost all of the landraces were separated according with their regional distribution. Moreover, population structure analysis revealed that all genotypes formed into three distinct clusters (k = 3), suggesting that geographic and climatic factors could provide diverse degrees of selection pressure. Accordingly, germplasm collection and cross breeding among different regions are suggested to accelerate the process of diverse germplasm creation and broaden germplasm resources of Chinese common bean.  相似文献   

13.

Key message

The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence.

Abstract

Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.  相似文献   

14.

Background

Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E) controls resistance to Melon necrotic spot virus (MNSV) in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method.

Results

A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV) and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV.

Conclusion

This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles.  相似文献   

15.
Selection and random genetic drift are the two main forces affecting allele frequencies in common bean breeding programs. Therefore, knowledge on allele frequency changes attributable to these forces is of fundamental importance for breeders. The changes in frequencies of alleles of biochemical markers were examined in F2 to F7 populations derived from crosses between cultivated Mesoamerican and Andean common bean accessions (Phaseolus vulgaris L.). Biochemical markers included the seed proteins phaseolin, lectin and other seed polypeptides, and six isozymes. The Schaffer’s test detected a high significant linear trend of the 63% of the polymorphic loci studied, meaning that directional selection was acting on those loci. Associations between seed size traits, phaseolin seed-storage protein and isozyme markers were detected based on the comparisons of the progeny genotypic means. In the interracial populations the intermediate form PhaH/T, b6, and Rbcs 98 alleles had a positive effect on seed size. In the inter-gene pool populations, a higher transmission of Mesoamerican alleles in all loci was showed, although the Andean alleles PhaT, Skdh 100 , Rbcs 98 , and Diap 100 showed positive effects on seed weight. Our results suggest that phaseolin and other seed proteins markers are linked to loci affecting seed size. These markers have good potential for improving the results of the selection and should be considered as a strategy for germplasm enhancement and to avoid the reduced performance of the inter-gene pool populations.  相似文献   

16.
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris , four recessive genes, bc-1 , bc-2 , bc-3 and bc-u , have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus . In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E . This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3 . F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F2 plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F3 plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.  相似文献   

17.
The pea cyv1 gene is a yet-to-be-identified recessive resistance gene that inhibits the infection of clover yellow vein virus (ClYVV). Previous studies confirmed that the cell-to-cell movement of ClYVV is inhibited in cyv1-carrying pea plants; however, the effect of cyv1 on viral replication remains unknown. In this study, we developed a new pea protoplast transfection method to investigate ClYVV propagation at the single-cell level. Using this method, we revealed that ClYVV accumulates to similar levels in both ClYVV-susceptible and cyv1-carrying pea protoplasts. Thus, the cyv1-mediated resistance would not suppress intracellular ClYVV replication.  相似文献   

18.

Background

Graves'' disease (GD) is the leading cause of hyperthyroidism and thyroid eye disease inherited as a complex trait. Although geoepidemiology studies showed relatively higher prevalence of GD in Asians than in Caucasians, previous genetic studies were contradictory concerning whether and/or which human leukocyte antigen (HLA) alleles are associated with GD in Asians.

Methodology/Principal Findings

We conducted a case-control association study (499 unrelated GD cases and 504 controls) and a replication in an independent family sample (419 GD individuals and their 282 relatives in 165 families). To minimize genetic and phenotypic heterogeneity, we included only ethnic Chinese Han population in Taiwan and excluded subjects with hypothyroidism. We performed direct and comprehensive genotyping of six classical HLA loci (HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1) to 4-digit resolution. Combining the data of two sample populations, we found that B*46:01 (odds ratio under dominant model [OR]  = 1.33, Bonferroni corrected combined P [PBc]  = 1.17×10−2), DPB1*05:01 (OR  = 2.34, PBc = 2.58×10−10), DQB1*03:02 (OR  = 0.62, PBc  = 1.97×10−2), DRB1*15:01 (OR  = 1.68, PBc = 1.22×10−2) and DRB1*16:02 (OR  = 2.63, PBc  = 1.46×10−5) were associated with GD. HLA-DPB1*05:01 is the major gene of GD in our population and singly accounts for 48.4% of population-attributable risk.

Conclusions/Significance

These GD-associated alleles we identified in ethnic Chinese Hans, and those identified in other Asian studies, are totally distinct from the known associated alleles in Caucasians. Identification of population-specific association alleles is the critical first step for individualized medicine. Furthermore, comparison between different susceptibility/protective alleles across populations could facilitate generation of novel hypothesis about GD pathophysiology and indicate a new direction for future investigation.  相似文献   

19.
The metabolism of 3H-androstenedione (Δ4 -A) and 3H-estriol (E3) was studied in 12 human breast tumors. Part of each tumor was analyzed for estrogen receptor content. Aliquots of tumor homogenates were incubated for 2 hr separately with 3H-δ4-A and 3H-E3 in the presence of appropriate cofactors. No distinct differences emerged in the profiles of the unconjugated metabolites of 3H-δ4-A, the major compounds in the approximate order of descendence being androsterone, androstanedione, testosterone, 5α-androstane-3α,17β-diol, epiandrosterone, and dihydrotestosterone. One tumor homogenate from an infiltrating lobular carcinoma converted 3H-Δ4-A to glucosiduronate metabolites (11%), of which androsterone, 6.4%; testosterone, 1.6%; and androstanediol, 0.6% predominated. The homogenate of this tumor and two other tumors converted 3H-E3 to 3H-E3-3S. Conversions of E3 to E3-3S In the other tumor homogenates were less than 0.6%. No correlation between receptor content and the capability of the tumor to conjugate Δ4-A or E3 evolved. However, correlations between steroid hormone metabolism and tumor histopathology may exist.  相似文献   

20.
普通菜豆抗炭疽病基因鉴定与分子标记   总被引:3,自引:1,他引:2  
菜豆炭疽病是世界菜豆生产中的主要病害之一,使幕豆产量和品质受到严重影响,对抗炭疽病基因的研究可以为培育抗炭疽病品种奠定基础。幕豆炭疽病病菌生理分化比较复杂,由于菜豆品种的抗病性和地域不同,菜豆炭疽菌的致病性分化不同。10个已知抗炭疽病基因中,9个基因(Co-1、Co-2、Co-3/Co-9、Co-4^2、Co-5、Co-6、Co-7、Co-10)已被确认为独立显性基因,其中Co-3/Co-9是等位基因;Co-1、Co-4和Co-9存在等位基因,co-8为隐性基因。除Co-5、Co-7和co-8三个基因还没有被定位外,其他基因被定位在不同的连锁群上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号