首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Key message

A new time- and cost-effective strategy was developed for medium-density SNP genotyping of rice biparental populations, using GoldenGate assays based on parental resequencing.

Abstract

Since the advent of molecular markers, crop researchers and breeders have dedicated huge amounts of effort to detecting quantitative trait loci (QTL) in biparental populations for genetic analysis and marker-assisted selection (MAS). In this study, we developed a new time- and cost-effective strategy for genotyping a population of progeny from a rice cross using medium-density single nucleotide polymorphisms (SNPs). Using this strategy, 728,362 “high quality” SNPs were identified by resequencing Teqing and Lemont, the parents of the population. We selected 384 informative SNPs that were evenly distributed across the genome for genotyping the biparental population using the Illumina GoldenGate assay. 335 (87.2 %) validated SNPs were used for further genetic analyses. After removing segregation distortion markers, 321 SNPs were used for linkage map construction and QTL mapping. This strategy generated SNP markers distributed more evenly across the genome than previous SSR assays. Taking the GW5 gene that controls grain shape as an example, our strategy provided higher accuracy (0.8 Mb) and significance (LOD 5.5 and 10.1) in QTL mapping than SSR analysis. Our study thus provides a rapid and efficient strategy for genetic studies and QTL mapping using SNP genotyping assays.  相似文献   

2.
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applications in rice (Oryza sativa L.), we designed seven GoldenGate VeraCode oligo pool assay (OPA) sets for the Illumina BeadXpress Reader. Validated markers from existing 1536 Illumina SNPs and 44?K Affymetrix SNP chips developed at Cornell University were used to select subsets of informative SNPs for different germplasm groups with even distribution across the genome. A 96-plex OPA was developed for quality control purposes and for assigning a sample into one of the five O. sativa population subgroups. Six 384-plex OPAs were designed for genetic diversity analysis, DNA fingerprinting, and to have evenly-spaced polymorphic markers for quantitative trait locus (QTL) mapping and background selection for crosses between different germplasm pools in rice: Indica/Indica, Indica/Japonica, Japonica/Japonica, Indica/O. rufipogon, and Japonica/O. rufipogon. After testing on a diverse set of rice varieties, two of the SNP sets were re-designed by replacing poor-performing SNPs. Pilot studies were successfully performed for diversity analysis, QTL mapping, marker-assisted backcrossing, and developing specialized genetic stocks, demonstrating that 384-plex SNP genotyping on the BeadXpress platform is a robust and efficient method for marker genotyping in rice.  相似文献   

3.
Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.  相似文献   

4.
We describe the application of complexity reduction of polymorphic sequences (CRoPS®) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.  相似文献   

5.
Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop’s center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.  相似文献   

6.
《Genomics》2020,112(5):3238-3246
Knowledge on population structure and genetic diversity is a focal point for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Here we used the GBS approach for the genome-wide identification of SNPs in a collection of Cynoglossus semilaevis and for the assessment of the level of genetic diversity in C. semilaevis genotypes. GBS analysis generated a total of 55.12 Gb high-quality sequence data, with an average of 0.63 Gb per sample. The total number of SNP markers was 563, 109. In order to explore the genetic diversity of C. semilaevis and to select a minimal core set representing most of the total genetic variation with minimum redundancy, C. semilaevis sequences were analyzed using high quality SNPs. Based on hierarchical clustering, it was possible to divide the collection into 2 clusters. The marine fishing populations were clustered and clearly separated from the cultured populations, and the cultured populations from Hebei was also distinct from the other two local populations. These analyses showed that genotypes were clustered based on species-related features. Differential significant SNPs were also captured and validated by GBS and SNaPshot, with linkage disequilibrium and haplotype analysis, seven SNPs have been confirmed to have obvious differentiation in two populations, which may be used as the characteristic evaluation sites of sea-captured and cultured Cynoglossus semilaevis populations. And SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs. These differential SNPs could be also employed as the characteristic evaluation sites of sea-captured and cultured Cynoglossus semilaevis populations in future.  相似文献   

7.
We developed a 384 multiplexed SNP array, named CitSGA-1, for the genotyping of Citrus cultivars, and evaluated the performance and reliability of the genotyping. SNPs were surveyed by direct sequence comparison of the sequence tagged site (STS) fragment amplified from genomic DNA of cultivars representing the genetic diversity of citrus breeding in Japan. Among 1497 SNPs candidates, 384 SNPs for a high-throughput genotyping array were selected based on physical parameters of Illumina’s bead array criteria. The assay using CitSGA-1 was applied to a hybrid population of 88 progeny and 103 citrus accessions for breeding in Japan, which resulted in 73,726 SNP calls. A total of 351 SNPs (91 %) could call different genotypes among the DNA samples, resulting in a success rate for the assay comparable to previously reported rates for other plant species. To confirm the reliability of SNP genotype calls, parentage analysis was applied, and it indicated that the number of reliable SNPs and corresponding STSs were 276 and 213, respectively. The multiplexed SNP genotyping array reported here will be useful for the efficient construction of linkage map, for the detection of markers for marker-assisted breeding, and for the identification of cultivars.  相似文献   

8.
Sesame (Sesamum indicum L. syn. Sesamum orientale L.) is considered to be the first oil seed crop known to man. Despite its versatile use as an oil seed and a leafy vegetable, sesame is a neglected crop and has not been a subject of molecular genetic research until the last decade. There is thus limited knowledge regarding genome-specific molecular markers that are indispensible for germplasm enhancement, gene identification, and marker-assisted breeding in sesame. In this study, we employed a genotyping by sequencing (GBS) approach to a sesame recombinant inbred line (RIL) population for high-throughput single nucleotide polymorphism (SNP) identification and genotyping. A total of 15,521 SNPs were identified with 14,786 SNPs (95.26 %) located along sesame genome assembly pseudomolecules. By incorporating sesame-specific simple sequence repeat (SSR) markers developed in our previous work, 230.73 megabases (99 %) of sequence from the genome assembly were saturated with markers. This large number of markers will be available for sesame geneticists as a resource for candidate polymorphisms located along the physical chromosomes of sesame. Defining SNP loci in genome assembly sequences provides the flexibility to utilize any genotyping strategy to survey any sesame population. SNPs selected through a high stringency filtering protocol (770 SNPs) for improved map accuracy were used in conjunction with SSR markers (50 SSRs) in linkage analysis, resulting in 13 linkage groups that encompass a total genetic distance of 914 cM with 432 markers (420 SNPs, 12 SSRs). The genetic linkage map constitutes the basis for future work that will involve quantitative trait locus (QTL) analyses of metabolic and agronomic traits in the segregating RIL population.  相似文献   

9.
Recently developed plant genomics approaches (LD mapping and genome-wide selection) require many molecular markers distributed throughout the plant genome. As a result, the availability of an increasing number of markers is essential for maintaining highly efficient and accurate plant breeding programs. In this study, we identified SNP loci in sunflower using a genotyping by sequencing (GBS) approach in an intraspecific F2 mapping population. A total of 271,445,770 reads were generated by the Genome Analyzer II next-generation sequencing platform and 29.2 % of the reads were aligned to unique locations in the genome. A total of 46,278 SNP loci were identified and 7646 SNP loci were validated in an F2 population. In addition, a SNP-based linkage map was constructed. This is the first report of SNP discovery in sunflower by GBS. The SNP markers and SNP-based linkage map will be valuable molecular genetics tools for sunflower breeding.  相似文献   

10.
Marker development for marker‐assisted selection in plant breeding is increasingly based on next‐generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence‐based genotyping (SBG), which couples AFLP®‐based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population. We identified 9983 putative SNPs in 6372 contigs between the two parents and used these SNPs for genotyping 91 recombinant inbred lines (RILs). Excluding redundant information from multiple SNPs per contig, 2606 (41%) markers were used for integration in a pre‐existing framework map, resulting in the integration of 2365 markers over 2607 cM. Of the 2606 markers available for mapping, 91% were integrated in the pre‐existing map, containing 708 SSRs, DArT markers, and SNPs from CRoPS technology, with a map‐size increase of 492 cM (23%). These results demonstrate the high quality of the discovered SNP markers. With this methodology, it was possible to saturate the map at a final marker density of 0.8 cM/marker. Looking at the binned marker distribution (Figure 2), 63 of the 268 10‐cM bins contained only SBG markers, showing that these markers are filling in gaps in the framework map. As to the markers that could not be used for mapping, the main reason was the low sequencing coverage used for genotyping. We conclude that SBG is a valuable tool for efficient, high‐throughput and high‐quality marker discovery and genotyping for complex genomes such as that of durum wheat.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

12.
High-throughput SNP genotyping with the GoldenGate assay in maize   总被引:4,自引:0,他引:4  
Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the genomes of most plant species. They have become an ideal marker system for genetic research in many crops. Several high throughput platforms have been developed that allow rapid and simultaneous genotyping of up to a million SNP markers. In this study, a custom GoldenGate assay containing 1,536 SNPs was developed based on public SNP information for maize and used to genotype two recombinant inbred line (RIL) populations (Zong3 x 87-1, and B73 x By804) and a panel of 154 diverse inbred lines. Over 90% of the SNPs were successfully scored in the diversity panel and the two RIL populations, with a genotyping error rate of less than 2%. A total of 975 SNP markers detected polymorphism in at least one of the two mapping populations, with a polymorphic rate of 38.5% in Zong3 x 87-1 and 52.6% in B73 x By804. The polymorphic SNPs in B73 x By804 have been integrated with previously mapped simple sequence repeat markers to construct a high-density linkage map containing 662 markers with a total length of 1,673.7 cM and an average of 2.53 cM between two markers. The minor allelic frequency (MAF) was distributed evenly across 10 continued classes from 0.05 to 0.5, and about 16% of the SNP markers had a MAF below 10% in the diversity panel. Polymorphism rates for individual SNP markers in pair-wise comparisons of genotypes tested ranged from 0.3 to 63.8% with an average of 36.3%. Most SNPs used in this GoldenGate assay appear to be equally useful for diversity analysis, marker-trait association studies, and marker-aided breeding.  相似文献   

13.
Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n?=?222 samples) and lettuce (n?=?87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike.  相似文献   

14.
Pear (Pyrus; 2n = 34), the third most important temperate fruit crop, has great nutritional and economic value. Despite the availability of many genomic resources in pear, it is challenging to genotype novel germplasm resources and breeding progeny in a timely and cost‐effective manner. Genotyping arrays can provide fast, efficient and high‐throughput genetic characterization of diverse germplasm, genetic mapping and breeding populations. We present here 200K AXIOM® PyrSNP, a large‐scale single nucleotide polymorphism (SNP) genotyping array to facilitate genotyping of Pyrus species. A diverse panel of 113 re‐sequenced pear genotypes was used to discover SNPs to promote increased adoption of the array. A set of 188 diverse accessions and an F1 population of 98 individuals from ‘Cuiguan’ × ‘Starkrimson’ was genotyped with the array to assess its effectiveness. A large majority of SNPs (166 335 or 83%) are of high quality. The high density and uniform distribution of the array SNPs facilitated prediction of centromeric regions on 17 pear chromosomes, and significantly improved the genome assembly from 75.5% to 81.4% based on genetic mapping. Identification of a gene associated with flowering time and candidate genes linked to size of fruit core via genome wide association studies showed the usefulness of the array in pear genetic research. The newly developed high‐density SNP array presents an important tool for rapid and high‐throughput genotyping in pear for genetic map construction, QTL identification and genomic selection.  相似文献   

15.
Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many ‘specialty crops’ such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between ‘Hakuho’ (high CR) and ‘UFGold’ (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR.  相似文献   

16.
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.  相似文献   

17.
Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.  相似文献   

18.
Capsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole‐genome resequencing and genotyping by sequencing (GBS) were used to construct high‐density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum‐clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co‐located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits.  相似文献   

19.
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic polymorphism in plant genomes. SNP markers are valuable tools for genetic analysis of complex traits of agronomic importance, linkage and association mapping, genome-wide selection, map-based cloning, and marker-assisted selection. Current challenges for SNP genotyping in polyploid outcrossing species include multiple alleles per loci and lack of high-throughput methods suitable for variant detection. In this study, we report on a high-resolution melting (HRM) analysis system for SNP genotyping and mapping in outcrossing tetraploid genotypes. The sensitivity and utility of this technology is demonstrated by identification of the parental genotypes and segregating progeny in six alfalfa populations based on unique melting curve profiles due to differences in allelic composition at one or multiple loci. HRM using a 384-well format is a fast, consistent, and efficient approach for SNP discovery and genotyping, useful in polyploid species with uncharacterized genomes. Possible applications of this method include variation discovery, analysis of candidate genes, genotyping for comparative and association mapping, and integration of genome-wide selection in breeding programs.  相似文献   

20.
Single nucleotide polymorphism (SNP) data can be obtained using one of the numerous uniplex or multiplex SNP genotyping platforms that combine a variety of chemistries, detection methods, and reaction formats. Kompetitive Allele Specific PCR (KASP) is one of the uniplex SNP genotyping platforms, and has evolved to be a global benchmark technology. However, there are no publications relating either to the technology itself or to its application in crop improvement programs. In this review, we provide an overview of the different aspects of the KASP genotyping platform, discuss its application in crop improvement, and compare it with the chip-based Illumina GoldenGate platform. The International Maize and Wheat Improvement Center routinely uses KASP, generating in excess of a million data points annually for crop improvement purposes. We found that (1) 81 % of the SNPs used in a custom-designed GoldenGate assay were transferable to KASP; (2) using KASP, negative controls (no template) consistently clustered together and rarely produced signals exceeding the threshold values for allele calling, in contrast to the situation observed using GoldenGate assays; (3) KASP’s average genotyping error in positive control DNA samples was 0.7–1.6 %, which is lower than that observed using GoldenGate (2.0–2.4 %); (4) KASP genotyping costs for marker-assisted recurrent selection were 7.9–46.1 % cheaper than those of the BeadXpress and GoldenGate platforms; and (5) KASP offers cost-effective and scalable flexibility in applications that require small to moderate numbers of markers, such as quality control analysis, quantitative trait loci (QTL) mapping in bi-parental populations, marker-assisted recurrent selection, marker-assisted backcrossing, and QTL fine mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号