首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turnover of phytochrome in pumpkin cotyledons   总被引:22,自引:3,他引:19       下载免费PDF全文
By using density labeling, it was found that the protein moiety of phytochrome is synthesized de novo in the red-absorbing form in cotyledons of dark-grown pumpkin (Cucurbita pepo L.) seedlings, as well as those irradiated with red light and returned to the dark. The rate of synthesis appears to be unaffected by the light treatment. Turnover of the red-absorbing form was also detected in dark grown seedlings using density labeling, while turnover of the far red-absorbing form is already implied from the well known “destruction” observed in irradiated seedlings. In both cases, true degradation of the protein is involved, but the rate constant of degradation of the far red-absorbing form may be up to two orders of magnitude greater than that of the red-absorbing form. The data indicate that, in pumpkin cotyledons, phytochrome levels are regulated against a background of continuous synthesis through divergent rate constants of degradation of the red and far red-absorbing forms and the relative proportions of the two forms present.  相似文献   

2.
Stress and Protein Turnover in Lemna minor   总被引:3,自引:2,他引:1       下载免费PDF全文
Transfer of fronds of Lemna minor L. to adverse growth conditions or stress situations causes a lowering of the growth rate and a loss of soluble protein per frond, the extent of the loss being dependent on the nature of the stress. The loss or protein is due to two factors: (a) a decrease in the rate constant of protein synthesis (ks); (b) an increase in the rate constant of protein degradation (kd). In plants adapted to the stresses, protein synthesis increases and the initially rapid rate of proteolysis is reduced. Addition of abscisic acid both lowers ks and increases kd, whereas benzyladenine seems to alleviate the effects of stress on protein content by decreasing kd rather than by altering ks. Based on the measurement of enzyme activities, stress-induced protein degradation appears to be a general phenomenon, affecting many soluble proteins. The adaptive significance of stress-induced proteolysis is discussed.  相似文献   

3.
Wheat leaves (Triticum aestivum L.) at the moment of their maximum expansion were detached and put in darkness. Their protein, RNA and DNA contents, as well as their rates of protein synthesis and degradation, were measured at different times from 0 to 5 days after detachment. Rates of protein synthesis were measured by incorporation into proteins of large amounts of [3H]leucine. Fractional rates of protein degradation were estimated either from the difference between the rates of synthesis and the net protein change or by the disappearance of radioactivity from proteins previously labeled with [3H]leucine or [14C]proline.

Protein loss reached a value of 20% during the first 48 hours of the process. RNA loss paralleled that of protein, whereas DNA content proved to be almost constant during the first 3 days and decreased dramatically thereafter.

Measurements of protein synthesis and degradation indicate that, in spite of a slowdown in rate of protein synthesis, an increased rate of protein breakdown is mainly responsible for the observed rapid protein loss.

  相似文献   

4.
Eising R  Gerhardt B 《Plant physiology》1989,89(3):1000-1005
Based on measurements of total catalase hematin and the degradation constants of catalase hematin, zero order rate constants for the synthesis of catalase were determined during the development of sunflower cotyledons (Helianthus annuus L.). Catalase synthesis reached a sharp maximum of about 400 picomoles hematin per day per cotyledon at day 1.5 during the elaboration of glyoxysomes in the dark. During the transition of glyoxysomes to leaf peroxisomes (greening cotyledons, day 2.5 to 5) catalase synthesis was constant at a level of about 30 to 40 picomoles hematin per day per cotyledon. In the cotyledons of seedlings kept in the dark (day 2.5 to 5) catalase synthesis did not exceed 10 picomoles hematin per day per cotyledon. During the peroxisome transition in the light, total catalase hematin was maintained at a high level, whereas total catalase activity rapidly decreased. In continuous darkness, total catalase hematin decreased considerably from a peak at day 2. The results show that both catalase synthesis and catalase degradation are regulated by light. The turnover characteristics of catalase are in accordance with the concept that glyoxysomes are transformed to leaf peroxisomes as described by the one population model and contradict the two population model and the enzyme synthesis changeover model which both postulate de novo formation of the leaf peroxisome population and degradation of the glyoxysome population.  相似文献   

5.
First order rate constants for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing 14C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly (P = 0.05) slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day−1 in contrast to the constants ranging from 0.304 day−1 to 0.515 day−1 during the other developmental stages. Density labeling experiments comprising labeling of catalase with 2H2O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of 14C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.  相似文献   

6.
Sugar degradation occurs during acid-catalyzed pretreatment of lignocellulosic biomass at elevated temperatures, resulting in degradation products that inhibit microbial fermentation in the ethanol production process. Arabinose, the second most abundant pentose in grasses like corn stover and wheat straw, degrades into furfural. This paper focuses on the first-order rate constants of arabinose (5 g/L) degradation to furfural at 150 and 170 °C in the presence of sulfuric, fumaric, and maleic acid and water alone. The calculated degradation rate constants (kd) showed a correlation with the acid dissociation constant (pKa), meaning that the stronger the acid, the higher the arabinose degradation rate. However, de-ionized water alone showed a catalytic power exceeding that of 50 mM fumaric acid and equaling that of 50 mM maleic acid. This cannot be explained by specific acid catalysis and the shift in pKw of water at elevated temperatures. These results suggest application of maleic and fumaric acid in the pretreatment of lignocellulosic plant biomass may be preferred over sulfuric acid. Lastly, the degradation rate constants found in this study suggest that arabinose is somewhat more stable than its stereoisomer xylose under the tested conditions.  相似文献   

7.
The biodegradation kinetics for chlorinated aliphatic hydrocarbons trichloroethylene (TCE) by Burkholderia (Pseudomonas) cepacia PR131 and for1,2-dichloethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 were determinedusing an initial rate method to determine the applicable rate law and relevant kinetic parametersunder aerobic conditions. A first order linear rate law applied to 1,2-DCA biodegradation by X. autotrophicus GJ10. The first order rate constant was determined to be 0.014 ml/min/mg.A non-linear rate law applied to TCE biodegradation by B. cepacia PR131.The maximum specific degradation rate constant was determined to be 0.8 nmol/min/mg protein,and the half saturation constant was determined to be 0.026 mM (3.47 ppm). Error analysisperformed on our analytical methods and computations, using a logarithmic differentiationmethod, indicated the relative error of our reported rate constants to be approximately 17%.Knowledge of the kinetic rate laws and kinetic parameters governing the biodegradation of TCEand 1,2-DCA by these strains will further the application of these strains in the environmental fieldand in waste treatment applications.  相似文献   

8.
Protein degradation by the ubiquitin-proteasome system (UPS) is a major regulatory mechanism for protein homeostasis in all eukaryotes. The standard approach to determining intracellular protein degradation relies on biochemical assays for following the kinetics of protein decline. Such methods are often laborious and time consuming and therefore not amenable to experiments aimed at assessing multiple substrates and degradation conditions. As an alternative, cell growth-based assays have been developed, that are, in their conventional format, end-point assays that cannot quantitatively determine relative changes in protein levels.Here we describe a method that faithfully determines changes in protein degradation rates by coupling them to yeast cell-growth kinetics. The method is based on an established selection system where uracil auxotrophy of URA3-deleted yeast cells is rescued by an exogenously expressed reporter protein, comprised of a fusion between the essential URA3 gene and a degradation determinant (degron). The reporter protein is designed so that its synthesis rate is constant whilst its degradation rate is determined by the degron. As cell growth in uracil-deficient medium is proportional to the relative levels of Ura3, growth kinetics are entirely dependent on the reporter protein degradation.This method accurately measures changes in intracellular protein degradation kinetics. It was applied to: (a) Assessing the relative contribution of known ubiquitin-conjugating factors to proteolysis (b) E2 conjugating enzyme structure-function analyses (c) Identification and characterization of novel degrons. Application of the degron-URA3-based system transcends the protein degradation field, as it can also be adapted to monitoring changes of protein levels associated with functions of other cellular pathways.  相似文献   

9.
Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k a = k a0 , where k a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.  相似文献   

10.
The light-dependent kinetics of the apparent in vivo synthesis and degradation of 2-carboxyarabinitol 1-phosphate (CA1P) were studied in three species of higher plants which differ in the extent to which this compound is involved in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity. Detailed studies with Phaseolus vulgaris indicate that both the degradation and synthesis of this compound are light-stimulated, although light is absolutely required only for CA1P degradation. We hypothesize that the steady state level of CAIP at any particular photon flux density (PFD) represents a pseudo-steady state balance between ongoing synthesis and degradation of this compound. The rate of CA1P synthesis in P. vulgaris and the resultant reduction in the total catalytic constant of Rubisco were maximal at 200 micromoles quanta per square meter per second following a step decrease from a saturating PFD, and substantially faster than the rate of synthesis in the dark. Under these conditions an amount of CA1P equivalent to approximately 25% of the Rubisco catalytic site content was synthesized in less than 1 minute. The rate of synthesis was reduced at higher or lower PFDs. In Beta vulgaris, the rate of CA1P synthesis at 200 micromoles quanta per square meter per second was substantially slower than in P. vulgaris. In Spinacea oleracea, an apparent noncatalytic tight-binding of RuBP to deactivated sites on the enzyme was found to occur following a step decrease in PFD. When dark acclimated leaves of P. vulgaris were exposed to a step increase in PFD, the initial rate of CA1P degradation was also found to be dependent on PFD up to a maximum of approximately 300 to 400 micromoles quanta per square meter per second. The rate of degradation of this compound was similar in B. vulgaris. In S. oleracea, a step increase in PFD resulted in noncatalytic RuBP binding to Rubisco followed by an apparent release of RuBP and activation of the enzyme. The in vivo rate of change of Rubisco activity in response to an increase or decrease in PFD was similar between species despite the differences between species in the mechanisms used for the regulation of this enzyme's activity.  相似文献   

11.
12.
Protein synthesis and protein degradation rates were measured in three desert annual species at four different experimental temperatures. The taxa chosen for this study were the C3 winter annuals, Bowlesia incana Ruiz & Pavon and Plantago insularis Eastw., and a C4 summer annual, Atriplex elegans (Moq.) D. Dietr. Peak rates of protein synthesis correlated well with the preferred habitat temperatures of B. incana and A. elegans; optima occurred at 25 and 35°C, respectively. Plants of P. insularis showed an optimum protein synthesis rate at 35°C; however, this optimum rate was considerably lower than for the other two species. Higher activation energies for protein synthesis tended to parallel adaptation to higher temperature habitats. Responses of protein degradation to temperature in A. elegans and B. incana were consistent with their natural thermal regimes, when evaluated for the transition from 25 to 35°C. Again, protein degradation in P. insularis shows an intermediate response to temperature during the 25 to 35°C transition.  相似文献   

13.
Certain temperature-sensitive Escherichia coli cell division mutants and DNA repair mutants were treated in several ways to alter DNA synthesis or cell division. The bacteria were pulsed with [35S]methionine; then membrane proteins were prepared and examined using sodium dodecyl sulfate/polyacrylamide slab gels. Autoradiography was performed on the slab gels so that the rate of synthesis of protein X could be determined by microdensitometry.Several changes in the rate of synthesis of the 40,000 molecular weight protein X were found in the different mutants. The wild-type (rec+ and lex+) strains synthesized protein X in response to DNA synthesis inhibition. However, neither recA? strains nor lex? strains synthesized protein X.Both the filament forming, temperature-sensitive mutants tif? and tsl? (which was derived from lex?) synthesized protein X when DNA synthesis was inhibited, but at rates different from the wild-type strains. Moreover, these strains also produced protein X at their non-permissive temperature, even though DNA synthesis was not inhibited. In the tif? mutant, the rate of synthesis of protein X was influenced by the addition of nucleic acid precursors.A double mutant tsl?recA? produced protein X when DNA synthesis was inhibited, or at the non-permissive temperature (although DNA synthesis was normal). This was the only strain carrying a recA? mutation capable of synthesizing protein X.From these results it is suggested that the genes lex, recA and tif comprise a system that controls DNA repair and limits DNA degradation by the recBC nuclease. The inducer of this control system might be a DNA degradation product.  相似文献   

14.
The effect of in-place regeneration of protein A adsorbents on protein adsorption characteristics is investigated. Regeneration with sodium hydroxide and time of exposure determined the protein capacity of the adsorbent, but no effect was observed on the adsorbent protein affinity. Fixed-bed adsorption of human immunoglobulin G was studied. Breakthrough curves were measured for protein adsorption on fixed-bed columns. These data were analyzed by a simple kinetic model to determine the rate constants for the adsorption process. It was found that forward adsorption rate constant remained constant along the chemical treatment exposure time. Protein A adsorbent selectivity was determined using mouse serum immunoglobulins G 1 and G 3 . Column linear gradient elution showed that adsorbent selectivity decreased with the exposure time chemical treatment. The implications of these results on the design and optimization of protein A chromatographic process are discussed.  相似文献   

15.
Nutritional control of protein degradation in isolated rat hepatocytes can take place in the absence of protein synthesis. Suppression of degradation by amino acids (step-up) is unaffected and the enhanced degradation seen upon amino acid deprivation (step-down) is only partially inhibited by cycloheximide at a concentration (10?3 M) which inhibits protein synthesis virtually completely. Protein degradation per se is, however, inhibited by cycloheximide as well as by puromycin, apparently at least in part by mechanisms additional or unrelated to their effect on protein synthesis. Several puromycin analogues (methylaminopurines) are stronger inhibitors of protein degradation than of protein synthesis, most notably puromycin aminonucleoside and 6-dimethylaminopurine riboside (N6, N6-dimethyladenosine). The latter compounds appear to specifically inhibit cellular autophagy, since neither the degradation of endocytosed protein (asialofetuin) nor the extralysosoma (amino acid-, propylamine- and leupeptin-resistant) degradation are affected.  相似文献   

16.
Cells of Arthrobacter atrocyaneus and A. crystallopoietes, harvested during their exponential phase, were starved in 0.03 M phosphate buffer (pH 7.0) for 28 days. During this time, the cells maintained 90 to 100% viability. Experimental results were similar for both organisms. Total cellular deoxyribonucleic acid was maintained. Measurable degradation rates for deoxyribonucleic acid as determined by radioisotope techniques were not observed, and only during the initial hours of starvation could a synthetic rate be determined. Total ribonucleic acid levels remained stable for the first 24 h of starvation, after which slow, continuous loss of orcinol-reactive material occurred. Synthetic and degradative rates of ribonucleic acid, as determined by radioisotope techniques, dropped quickly at the onset of starvation. Constant basal rates were attained after 24 h. In A. atrocyaneus, total cell protein was degraded continuously from the onset of starvation. In A. crystallopoietes, total cell protein remained stable for the first 24 h, after which slow continuous loss occurred. After 28 days, the total protein per cell was similar for both organisms. In the first week, amino acid pools stabilized at about 50% of the values characteristic of growth. Rates of degradation of protein decreased rapidly for the first 24 h for both organisms, but leveled to a constant basal rate thereafter. Rates of new protein synthesis dropped during the first 24 h and by 48 h achieved a constant basal rate.  相似文献   

17.
18.
The Turnover of Nucleic Acids in Lemna minor   总被引:18,自引:12,他引:6       下载免费PDF全文
A method is described for measuring the rate constants of both synthesis and degradation of nucleic acids in sterile growing cultures of Lemna minor which avoids the difficulties of environmental changes in isotope uptake and precursor pool size. In fast growing cultures the half-life of ribosomal RNA has been estimated to be between 5 and 8 days.  相似文献   

19.
The efflux of a substrate from preloaded cells may be decelerated by an inhibitor in the external medium or accelerated by a compatible substrate in the external medium. The derivations of rate equations for the initial velocity of the zero-trans reaction, trans efflux inhibition, and accelerated exchange diffusion are described for steady state conditions. The rate constants making up the Michaelis constant for the trans inhibition reaction are the same as the corresponding parameters in the zero-trans reaction. The rate constants making up the Michaelis constant for the accelerated exchange reaction, however, are different from the corresponding parameters in the zero-trans reaction. The rate equation for trans inhibition shows that the velocity constant for recovery of the unloaded carrier may be determined with steady state experimental data. It is suggested that the observed recovery constant is independent of the substrates and trans inhibitors chosen for an assay of a particular carrier system. An experiment is briefly described to show a determination of a tentative value for the recovery constant of the unloaded nucleoside carrier in yeast cells and the apparent inhibition constant for a trans inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号