首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fnr is a regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. To assess the role of Fnr in photosynthesis in Rubrivivax gelatinosus, a strain carrying a null mutation in fnrL was constructed. It was unable to grow anaerobically in the light, but, intriguingly, it was able to produce photosynthetic complexes under high oxygenation conditions. The mutant lacked all c-type cytochromes normally detectable in microaerobically-grown wild type cells and accumulated coproporphyrin III. These data suggested that the pleiotropic phenotype observed in FNR is primarily due to the control at the level of the HemN oxygen-independent coproporphyrinogen III dehydrogenase. hemN expression in trans partially suppressed the FNR phenotype, as it rescued heme and cytochrome syntheses. Nevertheless, these cells were photosynthetically deficient, and pigment analyses showed that they were blocked at the level of Mg(2+)-protoporphyrin monomethyl ester. Expression of both hemN and bchE in the FNR mutant restored synthesis of Mg(2+)-protochlorophyllide. We, therefore, conclude that FnrL controls respiration by regulating hemN expression and controls photosynthesis by regulating both hemN and bchE expression. A comprehensive picture of the control points of microaerobic respiration and photosynthesis by FnrL is provided, and the prominent role of this factor in activating alternative gene programs after reduction of oxygen tension in facultative aerobes is discussed.  相似文献   

4.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

5.
Insertion mutagenesis has been used to isolate Salmonella typhimurium strains that are blocked in the conversion of 5-aminolevulinic acid (ALA) to heme. These mutants define the steps of the heme biosynthetic pathway after ALA. Insertions were recovered at five unlinked loci: hemB, hemCD, and hemE, which have been mapped previously in S. typhimurium, and hemG and hemH, which have been described only for Escherichia coli. No other simple hem mutants were found. However, double mutants are described that are auxotrophic for heme during aerobic growth and fail to convert coproporphyrinogen III to protoporphyrinogen IX. These mutant strains are defective in two genes, hemN and hemF. Single mutants defective only in hemN require heme for anaerobic growth on glycerol plus nitrate but not for aerobic growth on glycerol. Mutants defective only in hemF have no apparent growth defect. We suggest that these two genes encode alternative forms of coproporphyrinogen oxidase. Anaerobic heme synthesis requires hemN function, while either hemN or hemF is sufficient for aerobic heme synthesis. These phenotypes are consistent with the requirement of a well-characterized class of coproporphyrinogen oxidase for molecular oxygen.  相似文献   

6.
Protoporphyrin formation in Rhizobium japonicum.   总被引:7,自引:6,他引:1       下载免费PDF全文
The obligately aerobic soybean root nodule bacterium Rhizobium japonicum produces large amounts of heme (iron protoporphyrin) only under low oxygen tensions, such as exist in the symbiotic root nodule. Aerobically incubated suspensions of both laboratory-cultured and symbiotic bacteria (bacteroids) metabolize delta-aminolevulinic acid to uroporphyrin, coproporphyrin, and protoporphyrin. Under anaerobic conditions, suspensions of laboratory-cultured bacteria form greatly reduced amounts of protoporphyrin from delta-aminolevulinic acid, whereas protoporphyrin formation by bacteroid suspensions is unaffected by anaerobiosis, suggesting that bacteroids form protoporphyrin under anaerobic conditions more readily than do free-living bacteria. Oxygen is the major terminal electron acceptor for coproporphyrinogen oxidation in cell-free extracts of both bacteroids and free-living bacteria. In the absence of oxygen, ATP, NADP, Mg2+, and L-methionine are required for protoporphyrin formation in vitro. In the presence of these supplements, coproporphyrinogenase activity under anaerobic conditions is 5 to 10% of that observed under aerobic conditions. Two mechanisms for coproporphyrinogen oxidation exist in R. japonicum: an oxygen-dependent process and an anaerobic oxidation in which electrons are transferred to NADP. The significance of these findings with regard to heme biosynthesis in the microaerophilic soybean root nodule is discussed.  相似文献   

7.
The S-adenosylmethionine (AdoMet) radical enzyme oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX during bacterial heme biosynthesis. The recently solved crystal structure of Escherichia coli HemN revealed the presence of an unusually coordinated iron-sulfur cluster and two molecules of AdoMet. EPR spectroscopy of the reduced iron-sulfur center in anaerobically purified HemN in the absence of AdoMet has revealed a [4Fe-4S](1+) cluster in two slightly different conformations. M?ssbauer spectroscopy of anaerobically purified HemN has identified a predominantly [4Fe-4S](2+) cluster in which only three iron atoms were coordinated by cysteine residues (isomer shift of delta = 0.43 (1) mm/s). The fourth non-cysteine-ligated iron exhibited a delta = 0.57 (3) mm/s, which shifted to a delta = 0.68 (3) mm/s upon addition of AdoMet. Substrate binding by HemN did not alter AdoMet coordination to the cluster. Multiple rounds of AdoMet cleavage with the formation of the reaction product methionine indicated AdoMet consumption during catalysis and identified AdoMet as a co-substrate for HemN catalysis. AdoMet cleavage was found to be dependent on the presence of the substrate coproporphyrinogen III. Two molecules of AdoMet were cleaved during one catalytic cycle for the formation of one molecule of protoporphyrinogen IX. Finally, the binding site for the unusual second, non iron-sulfur cluster coordinating AdoMet molecule (AdoMet2) was targeted using site-directed mutagenesis. All AdoMet2 binding site mutants still contained an iron-sulfur cluster and most still exhibited AdoMet cleavage, albeit reduced compared with the wild-type enzyme. However, all mutants lost their overall catalytic ability indicating a functional role for AdoMet2 in HemN catalysis. The reported significant correlation of structural and functional biophysical and biochemical data identifies HemN as a useful model system for the elucidation of general AdoMet radical enzyme features.  相似文献   

8.
9.
Nif- Hup- mutants of Rhizobium japonicum.   总被引:7,自引:2,他引:5       下载免费PDF全文
Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity.  相似文献   

10.
11.
12.
13.
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/- 5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested.  相似文献   

14.
15.
16.
17.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

18.
19.
Using transponson Tn5 mutagenesis, two transconjugants of Bradyrhizobium japonicum with the properties of both phage resistance and ability to induce nodulation were isolated at the frequency of 0.02%. These transconjugants were tested for their symbiotic performance on soybean cv. JS335 under greenhouse and field conditions. Both phage-resistant mutants induced nodules (nod (+)), but the transconjugant B. japonicum E13 was ineffective in nitrogen fixation (fix (-)). Rhizobiophage presence in the inoculum of phage-resistant mutants did not influence the symbiotic effectiveness. The mixture of wild strain and phage in the inoculum caused reduced symbiotic performance under controlled conditions, while under a field environment phage (100 and 500 mul of approximately 10(8) particles ml(-1)) presence did not have any recognizable effect on increased nodule dry weight, nitrogenase activity, or foliar N(2) content. On the basis of restriction fragment length polymorphism analysis, phage-sensitive, less effective, homologous bradyrhizobia belonging to B. japonicum were detected in root nodules of both inoculated and uninoculated plants. Inoculation of a higher concentration of phage in the inoculum significantly reduced the symbiotic performance, while the lower concentration of phage did not show any effect on phage-susceptible, less effective, homologous bradyrhizobia or, thus, symbiotic efficiency under field conditions. The phage-resistant mutant B. japonicum A49 showed effective symbiosis as efficient as that of the wild strain. Inoculation of phage-resistant mutants with lytic phage may reduce the occupancy of phage-susceptible, ineffective/less effective/mediocre homologous bradyrhizobia strains under natural complex soil conditions.  相似文献   

20.
Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号