首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Treatment of Bacillus cereus spores with nisin and/or pulsed-electric-field (PEF) treatment did not lead to direct inactivation of the spores or increased heat sensitivity as a result of sublethal damage. In contrast, germinating spores were found to be sensitive to PEF treatment. Nisin treatment was more efficient than PEF treatment for inactivating germinating spores. PEF resistance was lost after 50 min of germination, and not all germinated spores could be inactivated. Nisin, however, was able to inactivate the germinating spores to the same extent as heat treatment. Resistance to nisin was lost immediately when the germination process started. A decrease in the membrane fluidity of vegetative cells caused by incubation in the presence of carvacrol resulted in a dramatic increase in the sensitivity to nisin. On the other hand, inactivation by PEF treatment or by a combination of nisin and PEF treatments did not change after adaptation to carvacrol. Spores grown in the presence of carvacrol were not susceptible to nisin and/or PEF treatment in any way.  相似文献   

2.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

3.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

4.
The inactivation of Clostridium perfringens type A spores (three strains of different heat resistances) at ultrahigh temperatures was studied. Aqueous spore suspensions were heated at 85 to 135 C by the capillary tube method. When survivors were enumerated on the standard plating medium, the spores appeared to have been rapidly inactivated at temperatures above 100 C. The addition of lysozyme to the plating medium did not affect the recovery of spores surviving the early stages of heating, but lysozyme was required for maximal recovery of spores surviving extended heat treatments. The percentage of survivors requiring lysozyme for colony formation increased greatly with longer exposure times or increasing treatment temperature. Time-survivor curves indicated that each spore suspension was heterogeneous with respect to the heat resistance of spore outgrowth system or in the sensitivity of the spores to lysozyme. Recovery of survivors on the lysozyme containing medium revealed greater heat resistance for one strain than has been reported for spores of many mesophilic aerobes and anaerobes. The spores of all three strains were more resistant to heat inactivation when suspended in phosphate buffer, but a greater percentage of the survivors required lysozyme for colony formation.  相似文献   

5.
We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those germinated at 600 MPa. Since small, acid-soluble proteins (SASPs) and dipicolinic acid (DPA) are known to be involved in spore resistance to UV light and hydrogen peroxide, we studied the fate of these compounds during pressure germination. DPA was released upon both low- and high-pressure germination, but SASP degradation, which normally accompanies nutrient-induced germination, occurred upon low-pressure germination but not upon high-pressure germination. These results adequately explain the UV and hydrogen peroxide resistance of spores germinated at 600 MPa. The resistance to pressure inactivation of 600-MPa-germinated spores could also, at least partly, be attributed to α/β-type SASPs, since mutants deficient in α/β-type SASPs were more sensitive to inactivation at 600 MPa. Further, germination at 100 MPa resulted in rapid ATP generation, as is the case in nutrient-induced germination, but no ATP was formed during germination at 600 MPa. These results suggest that spore germination can be initiated by low- and high-pressure treatments but is arrested at an early stage in the latter case. The implications for the use of high pressure as a preservation treatment are discussed.  相似文献   

6.
Susceptibility of germinating spores of Bacillus subtilis to a rapid chilling was examined by viable countings. Dormant spores were quite resistant to the cold shock but the spores, immediately upon germination, lose viability almost completely by the same treatment. The presence of divalent cation, magnesium, calcium or manganese, in a buffer to which the germinating spores were suspended, markedly protected the cells from the death by the cold shock effect. When the shocked cells were incubated in the buffer containing casein acid hydrolyzate, glucose and magnesium ion for short period of time, a remarkable increase in viable counts was observed. The existence of two critical temperature zones, which were determined by the initial temperature of cell suspension, was confirmed in the cold shock of germinating spores.  相似文献   

7.
The survival of germinating spores of vesicular-arbuscular endophytes after treatments with oxidizing agents, antibiotics, moist heat, ultrasonic radiation, and ultraviolet radiation was compared with that of their contaminating microbes. Spores of three species were rapidly decontaminated by treatment with 0.42% (wt/vol) chlorine available from 5.0% (wt/vol) chloramine-T at 30°C for 20 to 40 min depending on the species and the soil from which they were extracted. This treatment did not change spore viability. The survival of spores was reduced by exposure for 20 min to 1.11% chlorine at 30°C for Glomus caledonius or at 35°C for Acaulospora laevis. Growth of any bacteria surviving treatment with oxidizing agents was inhibited by 100 μg of chloramphenicol per ml in agar; however, spore germination and germ tube growth were reduced only by concentrations greater than 200 μg/ml in agar. Spore germination was decreased by concentration of pimaracin, which controlled fungal growth. The spores survived moist heat at 40°C for 80 min, 55°C for 10 min, and 60°C for less than 1 min. The viability of spores was unaffected by ultrasonic irradiation for up to 4 min. Spores of G. caledonius and A. laevis were extremely resistant to ultraviolet radiation. Their viability was unaffected by exposure to 5 × 108 ergs cm−2 from an ultraviolet source of 253.7nm. The spores had very thick, pigmented walls, and the possibility that these provided some protection against the physical and chemical treatments is discussed. The degree of physiological damage to the spores caused by the treatments demonstrated some adverse effects of basic laboratory procedures. This information, together with that on the comparative sensitivity of contaminating microbes to the treatments, was used in the development of protocol for producing large numbers of uncontaminated spores.  相似文献   

8.
The effect of high NaCl concentrations on nutrient and nonnutrient germination of Bacillus subtilis spores was systematically investigated. Under all conditions, increasing NaCl concentrations caused increasing, albeit reversible, inhibition of germination. High salinity delayed and increased the heterogeneity of germination initiation, slowed the germination kinetics of individual spores and the whole spore population, and decreased the overall germination efficiency, as observed by a variety of different analytical techniques. Germination triggered by nutrients which interact with different germinant receptors (GRs) was affected differently by NaCl, suggesting that GRs are targets of NaCl inhibition. However, NaCl also inhibited GR-independent germination, suggesting that there is at least one additional target for NaCl inhibition. Strikingly, a portion of the spore population could initiate germination with l-alanine even at NaCl concentrations near saturation (∼5.4 M), suggesting that spores lack a salt-sensing system preventing them from germinating in a hostile high-salinity environment. Spores that initiated germination at very high NaCl concentrations excreted their large depot of Ca2+-pyridine-2,6-dicarboxylic acid and lost their heat resistance, but they remained in a phase-gray state in the phase-contrast microscope, suggesting that there was incomplete germination. However, some metabolic activity could be detected at up to 4.8 M NaCl. Overall, high salinity seems to exert complex effects on spore germination and outgrowth whose detailed elucidation in future investigations could give valuable insights on these processes in general.  相似文献   

9.
《Experimental mycology》1986,10(1):52-59
A soluble cyclic AMP phosphodiesterase was demonstrated in crude extracts ofPhycomyces spores. During an activating heat treatment of the spores the cyclic AMP phosphodiesterase activity was reduced to some 15% of its value in dormant spores. During early germination the activity slowly increased. No difference was found in the behavior of the enzyme from dormant and activated spores during gel filtration and anion exchange chromatography or in its sensitivity toward heat denaturation. After the spores were heated at different temperatures there was a coincidence between germination induction and cyclic AMP phosphodiesterase inactivation. 3-Isobutyl-1-methylxanthine induced an increase in both cyclic AMP concentration and trehalase activity in the spores and led to complete germination of the spores.  相似文献   

10.
High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harbored cwlJ and gerQ genes, which are known to be essential for Ca-DPA-induced germination in Bacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min; z value, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery of B. thermoamylovorans spores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients.  相似文献   

11.
The repair of deoxyribonucleic acid (DNA) in germinating spores was studied in comparison with that in vegetative cells. Radiation-induced single-strand breaks in the DNA of spores and of vegetative cells of Bacillus subtilis were rejoined during postirradiation incubation. The molecular weight of single-stranded DNA was restored to the level of nonirradiated cells. The rate of the rejoining of DNA strand breaks in irradiated spores was essentially equal to that in irradiated vegetative cells. The rejoining in spores germinating in nutrient medium occurred in the absence of detectable DNA synthesis. In this state, normal DNA synthesis was not initiated. Very little DNA degradation occurred during the rejoining process. On the other hand, in vegetative cells the rejoining process was accompanied by a relatively large amount of DNA synthesis and DNA degradation in nutrient medium. The rejoining occurred in phosphate buffer in vegetative cells but not in spores in which germination was not induced. Chloramphenicol did not interfere with the rejoining process in either germinating spores or vegetative cells, indicating that the rejoining takes place in the absence of de novo synthesis of repair enzyme. In the radiation-sensitive strain uvs-80, the capacity for rejoining radiation-induced strand breaks was reduced both in spores and in vegetative cells, suggesting that the rejoining mechanism of germinating spores is not specific to the germination process.  相似文献   

12.
High-precision measurements of size changes of individual bacterial spores based on ellipse fitting to bright-field images recorded with a digital camera were employed to monitor the germination of Bacillus spores with a precision of ∼5 nm. To characterize the germination of individual spores, we recorded bright-field and phase-contrast images and found that the timing of changes in their normalized intensities coincided, so the bright-field images can be used to characterize spore size and refractility changes during germination. The major conclusions from this work were as follows. (i) The sizes of germinating B. cereus spores were nearly unchanged until Trelease, the time of the completion of CaDPA (a 1:1 chelate of Ca2+ and dipicolinic acid [DPA]) release after addition of nutrient germinants. (ii) The minor axis of germinating B. cereus spores rapidly increased by ∼50 nm in a few seconds right after Trelease, while the major axis was slightly decreased or unchanged. Both the minor and major axes remained unchanged for a further 30 to 45 s and then increased by 100 to 200 nm by Tlys, the time of completion of cortex lysis. (iii) Individual spores in a population showed significant heterogeneity in the timing of germination events, such as Trelease and Tlys, but also variation in size changes during germination. (iv) Bacillus subtilis wild-type spores, B. subtilis spores lacking the cortex-lytic enzyme CwlJ, and wild-type Bacillus megaterium spores showed similar kinetics of size changes during nutrient germination. The size increases in germinating spores probably result from uptake of water and cortex lysis after completion of CaDPA release.  相似文献   

13.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

14.
The requirement of ultrahigh temperature (UHT)-treated Clostridium perfringens spores for lysozyme and the sensitivity of heated and unheated spores to lysozyme were studied. The UHT-treated spores requiring lysozyme for germination and colony formation originated from only a small portion of the non-UHT-treated spore population. This raised a question of whether the requirement for lysozyme was natural to the spores or was induced by the UHT treatments. However, these spores did not require lysozyme for germination before UHT treatment, which confirmed that the requirement for lysozyme had been induced by the UHT treatment. Only 1 to 2% of the spores were naturally sensitive to lysozyme; therefore, the mere addition of lysozyme to the plating medium did not permit the enumeration of all survivors. Treatment of UHT-treated spores with ethylenediaminetetraacetate (EDTA) sensitized the spores to lysozyme and increased by 10- to 100-fold the number of survivors that were detected on a medium containing lysozyme. Under the heating conditions used, spores that were naturally sensitive to lysozyme and spores that required EDTA treatment were equally heat resistant.  相似文献   

15.
The spores ofBacillus cereus formed during endotrophic sporulation in the presence of β 2-thienylalanine differ by the curve of heat-inactivation from the spores produced in distilled water containing calcium or in bactopeptone medium: the initial lag phase observed on heat inactivation is missing. The content of dipicolinic acid is comparable with that of control spores. Their UV resistance remains practically unchanged.  相似文献   

16.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

17.
6-Azauracil at a concentration of 1 μmole/ml inhibits by 50% the outgrowth of germinated spores of a strain ofBacillus cereus, concentration of 1.5 μmole/ml resulting in 100% inhibition. Two distinct maxima of sensitivity to 6-azauracil are observed during postgerminative development of spores. The first occurs during early stages of development (immediately after depolymerization period) and the second after about 60 min of cultivation (late stage of swelling). Uracil reverses the inhibition of the outgrowth of spores caused by 6-azauracil when added during 0–30 min of the spore development. The addition of uracil after 30 min of the germination does not bring about the reversion of the effect of 6-azauracil. An important role of pyrimidine pathway via orotidine 5′-phosphate in germinating spores was proved, suggesting a possible use of 6-azauracil in synchronization of the postgerminative development of spores.  相似文献   

18.
The addition of different cysteine or thioproline concentrations (1–5×10?4M) to the culture at the outset of the formation ofBacillus cereus prespores, i.e. before the commencement of dipicolinic acid synthesis, led to the death of some of the cells and injured the thermoprotection mechanism of the surviving spores. In control spores with a high dipicolinic acid content, inactivation by heating at 85°C was preceded by a lag phase, while in cysteine- and thioproline-treated spores this lag phase was completely absent and the death rate of most of the spores (D-value=17) was actually higher than the final death rate of the control spores (D-value=33). A small proportion of the spores in inhibited cultures (less than 10%) displayed almost the same heat resistance as untreated spores. The heat sensitivity of treated spores was greater than might have been anticipated from their dipicolinic acid content. Their resistance to X-rays was not lowered, but was actually slightly raised. The results are discussed with reference to the differentiation of a possible “basal” and “additional” spore thermoprotection mechanism and to differentiation of the nature of heat and radiation resistance in bacterial spores.  相似文献   

19.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

20.
The polypeptide nisin (100 U/ml) prevented malolactic fermentation in wines by indigenous or intentionally added lactic acid bacteria. Nisin (100 U/ml)-resistant mutants of Leuconostoc oenos were obtained and used with nisin in wine to carry out a pure-culture malolactic fermentation in the presence or absence of other lactic acid bacteria. Nisin degradation by mutants was not observed, and residual nisin was detectable in wines 4 months after it was added. Results indicated that nisin or nisin with resistant bacterial starter cultures can be used to control malolactic fermentation in wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号