首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Porphyromonas gingivalis was found to bind to hemoproteins (hemoglobin, myoglobin, catalase, cytochrome c ) and the binding properties of the envelope of P. gingivalis to hemoglobin were investigated. Maximum amount of hemoglobin bound to 1 mg of the envelope was 58 μg. No significant binding was observed at 4°C and the binding was inhibited strongly by tosyl- l -lysine chloromethyl ketone, Leupeptin, EDTA and partially by meta-periodate. Heating of the envelope at 70°C for 15 min resulted in complete loss of the binding activity. The binding activity of the envelope was not influenced by the treatment with the endogenous proteases. The envelope saturated with hemoglobin could no longer bind to other hemoproteins tested, indicating that binding site for these hemoproteins are common.  相似文献   

2.
Plant protoporphyrinogen oxidase is of particular interest since it is the last enzyme of the common branch for chlorophyll and heme biosynthetic pathways. In addition, it is the target enzyme for diphenyl ether-type herbicides, such as acifluorfen. Two distinct methods were used to investigate the localization of this enzyme within Percoll-purified spinach chloroplasts. We first assayed the enzymatic activity by spectrofluorimetry and we analyzed the specific binding of the herbicide acifluorfen, using highly purified chloroplast fractions. The results obtained give clear evidence that chloroplast protoporphyrinogen oxidase activity is membrane-bound and is associated with both chloroplast membranes, i.e. envelope and thylakoids. Protoporphyrinogen oxidase specific activity was 7-8 times higher in envelope membranes than in thylakoids, in good agreement with the number of [3H]acifluorfen binding sites in each membrane system: 21 and 3 pmol/mg protein, respectively, in envelope membranes and thylakoids. On a total activity basis, 25% of protoporphyrinogen oxidase activity were associated with envelope membranes. The presence of protoporphyrinogen oxidase in chloroplast envelope membranes provides further evidence for a role of this membrane system in chlorophyll biosynthesis. In contrast, the physiological significance of the enzyme associated with thylakoids is still unknown, but it is possible that thylakoid protoporphyrinogen oxidase could be involved in heme biosynthesis.  相似文献   

3.
A region of human interleukin-2 (IL-2) which was predicted to be a contact point with its receptor was used to locate a homologous region in the envelope protein of human T-lymphotropic retrovirus (HTLV-III). This homologous six amino acid peptide from the carboxy (C)-terminus of the HTLV-III envelope protein was found to inhibit the biological activity of human IL-2 in a murine spleen cell proliferation assay. When conjugated to a carrier protein, this peptide inhibited the binding of radiolabelled IL-2 to its receptor. The biological activity of the peptide was antagonized by a six amino acid peptide fragment of the IL-2 receptor which was predicted to be the contact point on the receptor that corresponded to the binding region of IL-2. The HTLV-III peptide also inhibited the binding of radiolabelled IL-2 to polyclonal anti-IL-2 antiserum. These data support the previous assignment of contact points between IL-2 and its receptor. They also suggest two possible mechanisms of immunosuppression during acquired immunodeficiency syndrome (AIDS). One involves direct competition of the envelope protein or its fragments with IL-2 for binding to the IL-2 receptor. The other involves antibodies to the envelope protein which crossreact with and neutralize IL-2.  相似文献   

4.
Vitelline envelopes are composed of glycoproteins that participate in sperm-egg interactions during the initial stages of fertilization. In Xenopus laevis, the vitelline envelope is composed of at least 4 glycoproteins (ZPA, ZPB, ZPC, and ZPX). A sperm binding assay involving the covalent coupling of envelope glycoproteins to silanized glass slides was developed. In our assay, sperm bound to the egg envelopes derived from oviposited eggs but not activated eggs. The majority of the egg envelope ligand activity for sperm binding was derived from the complex N-linked oligosaccharides of ZPC. This sperm binding involved N-acetylglucosamine and fucose residues, as binding was abolished after treatment with cortical granule beta-N-acetylglucosaminidase and commercial beta-N-acetylglucosaminidases and was reduced by 44% after treatment with alpha-fucosidase. Although both the envelope glycoproteins ZPA and ZPC possessed independent ligand activity, ZPC was the major ligand for sperm binding (75%). Mixing of isolated ZPA, ZPB, and ZPC in a ratio of 1:4:4 (equal to that in the egg envelope) resulted in sperm binding that was greater than that of the sum of the separate components. The egg glycoproteins acted in synergy to increase sperm binding. Thus, ZPC possessed both independent and hetero-oligomeric-dependent ligand activities for sperm binding.  相似文献   

5.
Y Chen  T Maguire    R M Marks 《Journal of virology》1996,70(12):8765-8772
The nature of the initial interaction of dengue virus with target cells and the extent to which this interaction defines tropism are unknown. Infection of some cells may involve antidengue antibody-mediated immune adherence to cells bearing immunoglobulin Fc receptors; however, this mechanism does not explain primary infection or the infection of cells without Fc receptors. We hypothesized that dengue virus envelope protein mediates initial binding to target cells. To test this hypothesis, a recombinant chimeric form of dengue type 2 virus envelope protein was used as a probe to investigate binding to the surfaces of potential target cells. Envelope protein was expressed amino terminal to the heavy-chain constant region of human immunoglobulin G containing the Fc receptor binding motif; the binding mediated by envelope determinants was distinguishable from the binding mediated by immunoglobulin Fc determinants. We found that the recombinant chimera bound to Vero, CHO, endothelial, and glial cells through envelope protein determinants and to monocytes and U937 cells by Fc-Fc receptor interactions. The highest level of binding was to Vero cells; binding was dose and time dependent and saturable. Examination of partial-length recombinant envelope proteins indicated that the binding motif was expressed between amino acids 281 and 423. Recombinant envelope protein inhibited infection of Vero cells by dengue virus, indicating the functional significance of the interaction of envelope protein and target cells in infectivity. These results suggest that envelope protein binding to a non-Fc receptor could explain the cell and tissue tropism of primary dengue virus infection.  相似文献   

6.
Animals immunized with the human immunodeficiency virus type 1 gp160 glycoprotein or certain recombinant envelope components develop potent virus-neutralizing activity. This activity is principally due to antibodies directed toward a hypervariable region of gp120 between cysteine residues 302 and 337 and is virus isolate specific. These antisera, as well as two neutralizing monoclonal antibodies directed against the same hypervariable sequence, do not appreciably block gp120 from binding CD4. In contrast, serum samples from infected humans possess high titers of antibodies that block gp120-CD4 binding; these titers approximately correlate with the serum neutralization titers. Our results suggest that there are at least two targets on the envelope glycoprotein for virus neutralization. The target responsible for the broader neutralizing activity of human serum may be a conserved region of gp120 involved in CD4 binding. The antibodies directed at the hypervariable region of the envelope inhibit a different step in virus infection which is subsequent to receptor binding. The extent to which these two different epitopes of gp120 may be involved in protection against human immunodeficiency virus infection is discussed.  相似文献   

7.
In addition to its role in receptor binding, the envelope glycoprotein of certain human immunodeficiency virus type 2 (HIV-2) isolates, including ROD10, exhibits a biological activity that enhances the release of HIV-2, HIV-1, and simian immunodeficiency virus particles from infected cells. The present study aims at better defining the functional domains involved in this biological activity. To this end, we have characterized the envelope protein of the ROD14 isolate of HIV-2, which, despite 95% homology with the ROD10 envelope at the amino acid level, is unable to enhance viral particle release. Site-directed mutagenesis showed that the presence of a truncation in the cytoplasmic tail of the ROD14 envelope was not responsible for the lack of activity, as previously reported for the HIV-2 ST isolate (G. D. Ritter, Jr., G. Yamshchikov, S. J. Cohen, and M. J. Mulligan, J. Virol. 70:2669–2673, 1996). Similarly, several modifications of the length of the ROD10 envelope cytoplasmic tail did not impair its ability to enhance particle release, suggesting that, in the case of the HIV-2 ROD isolate, particle release activity is not regulated by the length of the cytoplasmic tail.  相似文献   

8.
The binding of the lectin wheat germ agglutinin (WGA) to the cell surface of monocytes and macrophages obtained from the stimulated peritoneal cavity of mice was investigated electron microscopically, using ovomucoid-gold as an indirect marker. Resident (tissue) macrophages, identified by the presence of PO activity in the rough endoplasmic reticulum as well as in the nuclear envelope, showed low WGA binding, whereas monocytes and monocyte-derived macrophages with PO activity in the granules showed high WGA binding. Since cells devoid of PO activity showed variable WGA binding, the value of this gold-WGA-binding technique for discrimination on a quantitative basis between resident macrophages and monocytes or monocyte-derived macrophages, is discussed.  相似文献   

9.
Uptake of 14C-labelled chlorhexidine diacetate (14C-CHA) by wild-type and envelope mutant strains of Escherichia coli and Pseudomonas aeruginosa was very rapid. Maximum uptake was observed within a contact time of 20 s with no additional binding on increased contact, and was concentration-dependent. In contrast to this rapid binding of 14C-CHA, bactericidal studies revealed that the lethal activity of low concentrations of unlabelled CHA was slow, although higher concentrations had a rapid effect. Comparison of a wild-type strain with its envelope mutants indicated that there was little difference in 14C-CHA uptake, in minimal inhibitory concentrations or in bactericidal activity. Azolectin was found to be an effective neutralising agent of biguanide action, but in in vitro agar tests and in reducing or removing the amount of 14C-CHA taken up by the cells.  相似文献   

10.
Summary The binding of the lectin wheat germ agglutinin (WGA) to the cell surface of monocytes and macrophages obtained from the stimulated peritoneal cavity of mice was investigated electron microscopically, using ovomucoid-gold as an indirect marker. Resident (tissue) macrophages, identified by the presence of PO activity in the rough endoplasmic reticulum as well as in the nuclear envelope, showed low WGA binding, whereas monocytes and monocyte-derived macrophages with PO activity in the granules showed high WGA binding. Since cells devoid of PO activity showed variable WGA binding, the value of this gold-WGA-binding technique for discrimination on a quantitative basis between resident macrophages and monocytes or monocyte-derived macrophages, is discussed.  相似文献   

11.
Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The present study describes a quantitative measure of the volume of a bound inhibitor falling outside the substrate envelope, and observes that this quantity correlates with the inhibitor's losses in affinity to clinically relevant mutants. This measure may thus be useful as a penalty function in the design of robust HIV protease inhibitors.  相似文献   

12.
Summary After stimulation of the mouse peritoneal cavity with newborn calf serum (NBCS), four types of monocyte and macrophage were distinguished on the basis of peroxidase (PO) patterns. These cell types showed heterogeneity in their binding of the lectin wheat-germ agglutinin (WGA). At 16 h after stimulation, monocytes and monocyte-derived macrophages (with PO activity in granules) had a high level of WGA binding; PO-negative macrophages showed moderate WGA binding, and resident macrophages (with PO activity in the RER and nuclear envelope) had low WGA binding. At later time-points after stimulation, each of these cell types lost WGA binding sites. This decrease was related to a process of differentiation and to a modulation, affected by environmental factors. The present results also indicated that PO-negative macrophages can give rise to resident macrophages. Whether these PO-negative cells are monocyte derived or originate otherwise needs further investigation. The fourth type of macrophage, the exudate-resident cell (wtth PO activity both in granules and in the RER and nuclear envelope), with a WGA binding pattern similar to that of monocytes and monocyte-derived macrophages, was considered not to be a resident precursor cell.  相似文献   

13.
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.  相似文献   

14.
15.
The nuclear envelope of metazoans disassembles during mitosis and reforms in late anaphase after sister chromatids have well separated. The coordination of these mitotic events is important for genome stability, yet the temporal control of nuclear envelope reassembly is unknown. Although the steps of nuclear formation have been extensively studied in vitro using the reconstitution system from egg extracts, the temporal control can only be studied in vivo. Here, we use time-lapse microscopy to investigate this process in living HeLa cells. We demonstrate that Cdk1 activity prevents premature nuclear envelope assembly and that phosphorylation of the inner nuclear membrane protein lamin B receptor (LBR) by Cdk1 contributes to the temporal control. We further identify a region in the nucleoplasmic domain of LBR that inhibits premature chromatin binding of the protein. We propose that this inhibitory effect is partly mediated by Cdk1 phosphorylation. Furthermore, we show that the reduced chromatin-binding ability of LBR together with Aurora B activity contributes to nuclear envelope breakdown. Our studies reveal for the first time a mechanism that controls the timing of nuclear envelope reassembly through modification of an integral nuclear membrane protein.  相似文献   

16.
BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.  相似文献   

17.
The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro.  相似文献   

18.
Vaccinia virus intracellular mature virus (IMV) binds to glycosaminoglycans (GAGs) on cells via three virion proteins, H3L, A27L, and D8L. In this study, we demonstrated that binding of IMV to BSC40 cells was competitively inhibited by soluble laminin but not by fibronectin or collagen V, suggesting that this cell surface extracellular matrix (ECM) protein may play a role in vaccinia virus entry. Moreover, IMV infection of GAG(-) sog9 cells was also inhibited by laminin, demonstrating that virion binding to laminin does not involve a prior interaction with GAGs. Furthermore, comparative envelope protein analyses of wild-type vaccinia virus strain Western Reserve, which binds to laminin, and of a mutant virus, IA27L, which does not, showed that the A26L open reading frame (ORF), encoding an envelope protein, was mutated in IA27L, resulting in A26L being absent from the IMV. Expression of the wild-type A26L ORF in IA27L resulted in laminin binding activity. Moreover, recombinant A26L protein bound to laminin in vitro with a high affinity, providing direct evidence that A26L is the laminin binding protein on IMV. In summary, these results reveal a novel role for the vaccinia viral envelope protein A26L in binding to the ECM protein laminin, an association that is proposed to facilitate IMV entry.  相似文献   

19.
We have previously shown that the mouse heterochromatin protein 1 homologue M31 interacts dynamically with the nuclear envelope. Using quantitative in vitro assays, we now demonstrate that this interaction is potently inhibited by soluble factors present in mitotic and interphase cytosol. As indicated by depletion and order-of-addition experiments, the inhibitory activity co-isolates with a 55-kDa protein, which binds avidly to the nuclear envelope and presumably blocks M31-binding sites. Purification of this protein and microsequencing of tryptic peptides identify it as alpha2/6:beta2-tubulin. Consistent with this observation, bona fide tubulin, isolated from rat brain and maintained in a nonpolymerized state, abolishes binding of M31 to the nuclear envelope and aborts M31-mediated nuclear envelope reassembly in an in vitro system. These observations provide a new example of "moonlighting," a process whereby multimeric proteins switch function when their aggregation state or localization is altered.  相似文献   

20.
Sperm binding to the vitelline envelope in dejellied Xenopus laevis eggs was effectively inhibited by inhibitors for trypsin (soybean trypsin inhibitor and p-toluenesulfonyl-L-lysine chloroethyl ketone) and aminopeptidase B (o-phenanthroline, bestatin, and arphamenine B). Likewise, synthetic 4-methylcoumaryl-7-amide (MCA) substrates (t-butoxycarbonyl-GlyArgArg-MCA, benzyloxycarbonyl-ArgArg-MCA, and Arg-MCA) inhibited binding. Consistently, when jellied eggs were inseminated in the presence of these substrates or inhibitors for proteases, fertilization was effectively blocked. The medium in which live sperm or the sperm membrane fraction were suspended exhibited hydrolyzing activities against the synthetic substrates mentioned above, and these activities were effectively inhibited by the protease inhibitors. Ultracentrifugal fractionation of the sperm suspension following induction of the acrosome reaction by a calcium ionophore, A23187, indicated that a considerable amount of the total tryptic and aminopeptidase B activity was released into the medium. On this occasion, part of the tryptic and aminopeptidase B activity was definitely estimated to be discharged in association with a vesiculated membrane, supporting the notion that the proteases involved in binding to the vitelline envelope are present on the sperm plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号