首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Essential genes have been identified in the 1.5 map unit (m.u.)dpy-14-unc-29 region of chromosome I inCaenorhabditis elegans. Previous work defined nine genes with visible mutant phenotypes and nine genes with lethal mutant phenotypes. In this study, we have identified an additional 28 essential genes with 97 lethal mutations. The mutations were mapped using eleven duplication breakpoints, eight deficiencies and three-factor recombination experiments. Genes required for the early stages of development were common, with 24 of the 37 essential genes having mutant phenotypes arresting at an early larval stage. Most mutants of a gene have the same time of arrest; only four of the 20 essential genes with multiple alleles have alleles with different phenotypes. From the analysis of complementing alleles oflet-389, alleles with the same time-of-arrest phenotype were classified as either hypomorphic or amorphic. Mutants oflet-605, let-534 andunc-37 have both uncoordinated and lethal phenotypes, suggesting that these genes are required for the coordination of movement and for viability. The physical and genetic maps in thedpy-14 region were linked by positioning two N2/BO polymorphisms with respect to duplications in the region, and by localizing the right breakpoint of the deficiencyhDf8 on the physical map. Using cross-species hybridization toC. briggsae, ten regions of homology have been identified, eight of which are known to be coding regions, based on Northern analysis and/or the isolation of cDNA clones.  相似文献   

2.
Moerman DG  Baillie DL 《Genetics》1979,91(1):95-103
Fine-structure analysis of the unc-22 gene of Caenorhabditis elegans has revealed a number of sites that are separable by recombination. Eight new ethyl methanesulfonate-induced recessive mutations of the unc-22 gene have been isolated. Using these new alleles, as well as e66, a number of separable sites have been identified and positioned relative to one another. The map distances obtained are found to be comparable to those associated with intragenic recombination in Drosophila melanogaster, indicating that genetic fine-structure analysis is feasible in Caenorhabditis elegans. Evidence of possible gene conversion is presented. A preliminary estimate of the unc-22 gene size is 2.4 x 10-2 map units.  相似文献   

3.
Summary In the nematode, Caenorhabditis elegans, the body wall muscles contain paramyosin and two different types of myosin heavy chain, MHC A and MHC B. In mutants that do not express MHC B or that express defective paramyosin, muscle structure is disrupted and movement is impaired. Second site mutations in the sup-3 locus partially reverse these defects and are correlated with a 2- to 3-fold increase in the accumulation of the MHC A isoform. The sup-3 mutations occur at a high frequency (10–4) after ethyl methanesulfonate (EMS) mutagenesis. This is comparable to the average EMS-induced mutation rate per gene in C. elegans. In this paper we show that the sup-3 mutation is an amplification of the structural gene for the MHC A protein, myo-3. We employed genomic Southern hybridization with MHC gene-specific probes in order to measure the copy number of the myo-3 gene relative to that of the MHC B gene, unc-54. We have identified the putative amplification junctions for these sup-3 alleles using a set of cosmid clones which encompass myo-3 region. Although it has been suggested that gene amplification plays an important role in evolution, there are few known cases of gene amplification in the germ line cells of multicellular organisms. The results shown here provide a clear example of a heritable gene amplification event that occurs at a high frequency in the germ line. Similar events may thus represent the initial event in the evolution of new function and in the formation of multigene families.  相似文献   

4.
The Caenorhabditis elegans ryanodine receptor is encoded by the unc-68 gene, and functions as a Ca2+-induced Ca2+ release channel during muscle contraction. To investigate the factors that suppress calcium release and identify molecules that interact with the ryanodine receptor, we isolated revertants from two unc-68 mutants. Three of the revertants obtained from the null allele unc-68(e540), which displayed normal motility, had intragenic mutations that resulted in failure to splice out intron 21. The other two, kh53 and kh55, had amino acid insertions in the third of the four RyR domains. The brood size and the egg laying rate remain abnormal in these revertants. This suggests the third RyR domain may be required for egg laying and embryogenesis, although we can not determine a molecular mechanism. Five ketamine sensitive revertants recovered from the missense mutant unc-68(kh30) showed altered responses to caffeine, ryanodine, levamisole and ouabain relative to those of the unc-68(kh30) animals. These may carry second-site suppressor mutations, which may define genes for proteins that regulate the Ca2+ concentration in body-wall muscle. One of these mutants, kh52 , shows lower motility and higher sensitivity to drugs, and this mutation was mapped to chromosome X. These observations provide a basis for the study of ryanodine receptor functions in embryogenesis and in calcium-mediated regulation of muscle contraction in C. elegans. This is the first study to show that the conserved RyR domain of the receptor acts in egg laying and embryogenesis.Communicated by C. P. Hollenberg  相似文献   

5.
Summary The subject of this study is the organization of essential genes in the 2 map-unit unc-22 IV region of the Caenorhabditis elegans genome. With the goal of achieving mutational saturation of essential genes in this region, 6491 chromosomes mutagenized with ethyl methanesulfonate (EMS) were screened for the presence of lethal mutations in the unc-22 region. The genetic analysis of 21 lethal mutations in the unc-22 region resulted in the identification of 6 new essential genes, making a total of 36 characterized to date. A minimum of 49 essential genes are estimated to lie in this region. A set of seven formaldehyde-induced deficiencies of unc-22 and surrounding loci were isolated to facilitate the positioning of essential genes on the genetic and physical maps. In order to study essential genes at the molecular level, our approach was to rescue lethal mutations by the injection of genomic DNA in the form of cosmid clones into the germ-line of balanced heterozygotes carrying a lethal mutation. The cosmid clones containing let-56 and let-653 were identified by this method.  相似文献   

6.
Five formaldehyde-induced deficiencies that uncover unc-22 IV, a gene affecting muscle structure in the nematode Caenorhabditis elegans were isolated and positioned. The largest deficiency, sDf2, extends in both directions from unc-22 and is approximately 1.0–2.0 map units in length. The other four deficiencies, sDf7, sDf8, sDf9 and sDf10, are all smaller than sDf2 and are located within the region uncovered by this deficiency. Thirty-seven ethyl methanesulfonate-induced lethal and sterile mutations linked to unc-22 were isolated and tested for complementation with sDf2. Nineteen lethal mutations failed to complement sDf2. Sixteen of these were further positioned by recombination mapping and also by deficiency mapping with sDf7, sDf8, sDf9 and sDf10. These sixteen mutations define 11 new essential genes in this region. Eight of the genes lie in a 0.9-map unit interval to the left of unc-22, whereas the three remaining genes lie in a region of about 0.2 map units to the right of unc-22. We believe that two of the essential genes identified in this study, let-56 and let-52, are the adjacent genes on either side of unc-22. The lethal mutations exhibit a wide range of terminal phenotypes: from first stage larva to sterile adult.  相似文献   

7.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

8.
Reversion analysis of mutants of unc-22 IV, a gene affecting muscle structure and function in Caenorhabditis elegans, led to the isolation of six extragenic dominant suppressors of the “twitching” phenotype of unc-22 mutants. All six suppressors are new alleles of unc-54 I, the major body wall myosin heavy chain gene. Homozygous suppressor strains are slow, stiff and have normal muscle structure, whereas previously identified unc-54 alleles confer flaccid paralysis and drastic reduction in thick filament number and organization. Placement of the three suppressor mutations s74, s77 and s95 on the genetic fine structure map of unc-54 demonstrates that they are clustered near the right end of the map. Since this end of the gene corresponds to the 5′ end of the coding sequence, these suppressor mutations probably result in amino acid substitutions in the globular head of the myosin molecule, and should be of value in studies of myosin force generation.  相似文献   

9.
Summary A previous study of genomic organization described the identification of nine potential coding regions in 150 kb of genomic DNA from the unc-22(IV) region of Caenorhabditis elegans. In this study, we focus on the genomic organization of a small interval of 0.1 map unit bordered on the right by unc-22 and on the left by the left-hand breakpoints of the deficiencies sDf9, sDf19 and sDf65. This small interval at present contains a single mutagenically defined locus, the essential gene let-56. The cosmid C11F2 has previously been used to rescue let-56. Therefore, at least some of C11F2 must reside in the interval. In this paper, we report the characterization of two coding elements that reside on C11F2. Analysis of nucleotide sequence data obtained from cDNAs and cosmid subclones revealed that one of the coding elements closely resembles aromatic amino acid decarboxylases from several species. The other of these coding elements was found to closely resemble a human growth factor activatable Na+/H+ antiporter. Pairs of oligonucleotide primers, predicted from both coding elements, have been used in PCR experiments to position these coding elements between the left breakpoint of sDf19 and the left breakpoint of sDf65, between the essential genes let-653 and let-56.  相似文献   

10.
We describe the molecular analysis of the dpy20 gene in Caenorhabditis elegans. Isolation of genomic sequences was facilitated by the availability of a mutation that resulted from insertion of a Tc1 transposable element into the dpy-20 gene. The Tc1 insertion site in the m474:: Tc1 allele was identified and was found to lie within the coding region of dpy-20. Three revertants (two wild-type and one partial revertant) resulted from the excision of this Tc1 element. Genomic dpy-20 clones were isolated from a library of wild-type DNA and were found to lie just to the left of the unc-22 locus on the physical map, compatible with the position of dpy-20 on the genetic map. Cosmid DNA containing the dpy-20 gene was successfully used to rescue the mutant phenotype of animals homozygous for another dpy-20 allele, e1282ts. Sequence analysis of the putative dpy-20 homologue in Caenorhabditis briggsae was performed to confirm identification of the coding regions of the C. elegans gene and to identify conserved regulatory regions. Sequence analysis of dpy-20 revealed that it was not similar to other genes encoding known cuticle components such as collagen or cuticulin. The dpy-20 gene product, therefore, identifies a previously unknown type of protein that may be directly or indirectly involved in cuticle function. Northern blot analysis showed that dpy-20 is expressed predominantly in the second larval stage and that the mRNA is not at all abundant. Data from temperature shift studies using the temperature-sensitive allele e1282ts showed that the sensitive period also occurs at approximately the second larval stage. Therefore, expression of dpy-20 mRNA and function of the DPY-20 protein are closely linked temporally.  相似文献   

11.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

12.
Spontaneous Unstable UNC-22 IV Mutations in C. ELEGANS Var. Bergerac   总被引:21,自引:2,他引:19  
This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 x 10-4 , and most of these spontaneous unc-22 mutations revert at frequencies between 2 x 10-3 and 2 x 10 -4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable.

The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.

  相似文献   

13.
A. M. Rose  D. L. Baillie 《Genetics》1980,96(3):639-648
In the nematode Caenorhabditis elegans mutants in the gene unc-15 (I) affect the muscle protein paramyosin (Waterston, Fishpool and Brenner 1977). We have characterized 20 ethyl methanesulfonate-induced mutations in essential genes closely linked to unc-15. These lethals defined 16 new complementation groups. In the 0.65 map-unit interval around unc-15 defined by dpy-14 and unc-56, seven newly identified genes have been mapped relative to five existing genes. At present, the average distance between genes in this region is approximately 0.05 map units. Two genes, unc-15 and unc-13, are only 0.025 map units apart. Partial fine-structure maps of alleles of these two genes have been constructed. This analysis of unc-15 and genes adjacent to it is the first in a series of genetic and biochemical studies directed towards understanding the control of unc-15 expression.  相似文献   

14.
We have identified five independent allelic mutations, defining the gene cha-1, that result in decreased choline acetyltransferase (ChAT) activity in Caenorhabditis elegans. Four of the mutant alleles, when homozygous, lead to ChAT reductions of>98%, as well as recessive phenotypes of uncoordinated behavior, small size, slow growth and resistance to cholinesterase inhibitors. Animals homozygous for the fifth allele retain approximately 10% of the wild-type enzyme level; purified enzyme from this mutant has altered Km values for both choline and acetyl-CoA and is more thermolabile than the wild-type enzyme. These qualitative alterations, together with gene dosage data, argue that cha-1 is the structural gene for ChAT. cha-1 has been mapped to the left arm of linkage group IV and is within 0.02 map unit of the gene unc-17, mutant alleles of which lead to all of the phenotypes of cha-1 mutants except for the ChAT deficiency. Extensive complementation studies of cha-1 and unc-17 alleles reveal a complex complementation pattern, suggesting that both loci may be part of a single complex gene.  相似文献   

15.
Caenorhabditis elegans is an important model organism for modern biologic research. An essential aspect of C. elegans research is the production of transgenic animals for study. These are often generated via microinjection, but biolistic bombardment has become increasingly popular. However, many of the plasmids previously generated for use in microinjection are not readily used for bombardment due to the lack of a convenient marker. The unc-119 gene is often used as a marker since unc-119 rescue can be observed at low magnification, allowing rescued animals to be easily distinguished from the larger number of non-rescued animals. Here we report the use of homologous recombination in Escherichia coli as a method to insert a cassette containing the unc-119 gene into commonly used plasmids at the site of the ampicillin resistance gene which is simpler than other methods like subcloning. These cassettes are flanked by regions homologous to the 5′ and 3′ ends of the ampicillin resistance gene and contain either the unc-119 gene and the kanamycin resistance gene or a unc-119:mCherry fusion gene and the kanamycin resistance gene. The resulting plasmids may be used for biolistic bombardment to yield animals that display unc-119 rescue, and also express the recipient plasmid transgene.  相似文献   

16.
Rim是囊泡分泌活性区中的重要组成蛋白,它与细胞分泌和突触可塑性相关.在秀丽隐感线虫中只存在一种编码Rim的基因即unc-10.我们的研究发现,在线虫中Rim的基因突变unc-10(md1117)会导致致密核心囊泡的分泌缺陷.在活体中,unc-10突变虫系的神经多肽分泌显著下降.此外,在主要分泌致密核心囊泡的ALA神经元内,钙光解释放促发的快相分泌也比野生型减少.运用全内反射荧光显微成像技术,我们观察在unc-10缺失的情况下ALA 神经元中致密核心囊泡的锚定过程,结果显示在细胞膜附近停留的囊泡数目减少,表明囊泡锚定受到阻碍.上述试验结果表明,UNC-10能够影响致密核心囊泡的分泌过程,其机制可能是影响了囊泡的锚定过程.  相似文献   

17.
Genetic Organization of the Unc-60 Region in Caenorhabditis Elegans   总被引:2,自引:1,他引:1  
We have investigated the chromosomal region around unc-60 V, a gene affecting muscle structure, in the nematode Caenorhabditis elegans. The region studied covers 3 map units and lies at the left end of linkage group (LG) V. Compared to the region around dpy-11 (at the center of LGV), the unc-60 region has relatively few visible genes per map unit. We found the same to be true for essential genes. By screening simultaneously for recessive lethals closely linked to either dpy-11 or unc-60, we recovered ethyl methanesulfonate-induced mutations in 10 essential genes near dpy-11 but in only two genes near unc-60. Four deficiency breakpoints were mapped to the unc-60 region. Using recombination and deficiency mapping we established the following gene order: let-336, unc-34, let-326, unc-60, emb-29, let-426. Regarding unc-60 itself, we compared the effect of ten alleles (including five isolated during this study) on hermaphrodite mobility and fecundity. We used intragenic mapping to position eight of these alleles. The results show that these alleles are not distributed uniformly within the gene, but map to two groups approximately 0.012 map unit apart.  相似文献   

18.
Summary Mutations in the major gut esterase of the nematode Caenorhabditis elegans have been induced by ethylmethane sulfonate and detected by isoelectric focusing. The gut esterase locus, denoted ges-1, maps less than 0.3 map units to the right of the unc-60 locus, at the left end of chromosome V.  相似文献   

19.
The crop legume pea (Pisum sativum) is genetically well characterized. However, due to its large genome it is not amenable to efficient positional cloning strategies. The purpose of this study was to determine if the model legume Medicago truncatula, which is a close relative of pea, could be used as a reference genome to facilitate the cloning of genes identified based on phenotypic and genetic criteria in pea. To this end, we studied the level of microsynteny between the SYM2 region of pea and the orthologous region in M. truncatula. Initially, a marker tightly linked to SYM2 was isolated by performing differential RNA display on near-isogenic pea lines. This marker served as the starting point for construction of a BAC physical map in M. truncatula. A fine-structure genetic map, based on eight markers from the M. truncatula physical map, indicates that the two genomes in this region share a conserved gene content. Importantly, this fine structure genetic map clearly delimits the SYM2-containing region in pea and the SYM2-orthologous region in M. truncatula, and should provide the basis for cloning SYM2. The utility of the physical and genetic tools in M. truncatula to dissect the SYM2 region of pea should have important implications for other gene cloning experiments in pea, in particular where the two genomes are highly syntenic within the region of interest.  相似文献   

20.
A Second Informational Suppressor, SUP-7 X, in CAENORHABDITIS ELEGANS   总被引:15,自引:14,他引:1  
More than 30 independent suppressor mutations have been obtained in the nematode C. elegans through reversion analysis of two unc-13 mutants. Many of the new isolates map to the region of the previously identified informational suppressor, sup-5 III (Waterston and Brenner 1978). Several of the other suppressor mutations map to the left half of the X-linkage group and define a second suppressor gene, sup-7 X. In tests against 40 mutations in six genes, the sup-7(st5) allele was found to suppress to a greater extent the same alleles acted on by sup-5(e1464). Like sup-5(e1464), sup-7(st5) acts on null alleles of the myosin heavy-chain gene unc-54 I (MacLeod et al. 1977; MacLeod, Waterston and Brenner 1977) and the putative paramyosin gene unc-15 I (Waterston et al. 1977). Chemical analysis of unc-15(e1214); sup-7(st5) animals show that paramyosin is restored to more than 30% of the wild-type level.—As was observed for sup-5(e1464), suppression by sup-7(st5) is dose dependent and is greater in animals grown at 15° than at 25°. However, associated with this increased suppression is a decreased viability of sup-7(st5) homozygotes. Reversion of the lethality has resulted in the isolation of deficiency mutations that complement st5 lethality, but lack suppressor function. These properties of sup-7(st5) suggest that it, like sup-5(e1464), is an informational suppressor of null alleles, and its reversion via deficiencies further narrows the possible explanations of its action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号