首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The side population (SP) phenotype has been reported as a method to identify hematopoietic stem cells in the bone marrow based upon differential staining with the fluorescent dye, Hoechst 33342. This technique has drawn great interest in the stem cell community, as it may provide a simple approach to the enrichment of progenitor cells from a variety of normal and malignant tissues. The frequency of these cells and their performance in functional assays has varied considerably within the literature. To investigate mechanisms that may contribute to the SP phenotype, we measured the fluorescence emission of Hoechst-stained bone marrow cells as a function of both time and dye concentration using a custom flow cytometer and data acquisition software. These measurements demonstrate that all nucleated cells within the bone marrow undergo an identical staining pattern at varying rates, even under conditions previously reported to abrogate the SP. Therefore, the SP phenotype is not unique to stem cells, but rather represents a transient feature of marrow cells exposed to Hoechst 33342 for varying amounts of time. We propose that heterogeneity of SP-defined populations may be a consequence of the rate at which differing cell populations accumulate Hoechst 33342. Further, we suggest that dye uptake kinetics will likely be an important factor for optimal use of Hoechst 33342 in isolating stem cells.  相似文献   

2.
BACKGROUND: Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. METHODS: Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. RESULTS: The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. CONCLUSIONS: At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.  相似文献   

3.
This protocol describes a rapid and simple method for the identification of apoptotic cells. Owing to changes in membrane permeability, early apoptotic cells show an increased uptake of the vital DNA dye Hoechst 33342 (HO342) compared with live cells. The nonvital DNA dye 7-amino-actinomycin D (7-AAD) is added to distinguish late apoptotic or necrotic cells that have lost membrane integrity from early apoptotic cells that still have intact membranes as assayed by dye exclusion. The method is suitable to be combined with cell surface staining using Abs of interest labeled with fluorochromes that are compatible with HO342 and 7-AAD emissions. Surface antigen staining is carried out according to standard methods before staining for apoptosis. The basic assay can be completed in 30 min, and extra time is needed for cell surface antigen staining.  相似文献   

4.
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis delta lmrA delta lmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.  相似文献   

5.
A Krishan 《Cytometry》1987,8(6):642-645
The present study shows that staining of certain live cells, e.g., adriamycin-resistant P388 cells, by Hoechst 33342 is difficult because of the presence of a rapid efflux pump, which reduces intracellular dye concentration. Coincubation of these refractory cells in the presence of efflux blockers such as phenothiazines (trifluoperazine) or Ca++ channel blockers (verapamil) enhances dye retention and thus leads to generation of normal DNA distribution histograms. Laser flow cytometric data is confirmed by fluorometric assays, which show that P388/R cells retain one-third the amount of Hoechst 33342, and coincubation with efflux blockers increases Hoechst retention to values similar to those of drug-sensitive P388 cells. DNA histograms of mouse splenocytes incubated with Hoechst 33342 alone have a bimodal distribution possibly because of the presence of subpopulations that do not retain the fluorochrome owing to rapid efflux. Coincubation with an efflux blocker results in the generation of unimodal DNA histograms from these cells. These preliminary studies suggest that reduced retention of Hoechst 33342 in certain cell types (because of rapid efflux) can be blocked by efflux blockers, thus leading to generation of typical DNA distribution histograms.  相似文献   

6.
Exclusion of Hoechst 33342 dye is a characteristic common to stem cells, as well as chemotherapy-resistant cancer cells. Normally, these dye-excluding cells can be sorted from enzymatically dissociated tissues with a UV cell sorter/flow cytometer. UV-flow cytometry can be expensive, time-consuming and not readily available to all laboratories. We have developed a simple, high-throughput 96-well microtiter plate assay by which cell populations can be quickly screened for Hoechst dye uptake and exclusion. The method is compatible with green-fluorescent EGFP expressing cells, often used in stem cell biology. Useful applications for this assay will be the rapid screening of clonal stem cell populations and tumor cells for Hoechst dye uptake.  相似文献   

7.
C Wiezorek 《Histochemistry》1984,81(5):493-495
The effect of staining cellular DNA with the bisbenzimidazole dye Hoechst 33342 on the colony forming efficiency of Chinese Hamster Ovary Cells in different cell cycle phases has been studied. Exposures of 90 and 120 min to 5 microM Hoechst 33342 provided a considerable loss of clonogenicity depending on the cycle phase at staining procedure. The G2+M cells reveal to be the most sensitive fraction followed by the G1 cells. The highest resistance was found on S-phase cells with a colony forming efficiency exceeding that of the G2+M fraction by a factor of two.  相似文献   

8.
Earlier, we have described the process of active dissociation or "DNA clearing" from non-covalently bound agents in living mammalian cells. The vital fluorescent bisbenzimidazole dye Hoechst 33342, which binds DNA in the minor groove tightly but non-covalently, was used for studying the interaction of non-covalently binding agents with DNA. Multiple drug resistance (MDR) in tumour cells is related to the expression of transport proteins that alter the cellular drug transport and distribution. Three different groups of genes (mdr, MRP, and LRP) and their products are implicated in MDR (A. Krishan, C. M. Fitz, and I. Andritsch, Cytometry 29:279-285 (1997)). To obtain new cell lines characterized by enhanced process of active dissociation of non-covalently bound agents from DNA or "DNA clearing", we carried out step-by-step selection with increasing concentrations of Hoechst 33342. The rodent cell lines hyperresistant to Hoechst 33342 and selected from AA8 were named AA8Hoe-R-1-AA8Hoe-R-10, and the cell lines selected from L cells were called LHoe-R-1-LHoe-R-10. The most resistant of them, AA8Hoe-R-6 and AA8Hoe-R-7, were able to grow in the presence of 80 microm/ml of Hoechst 33342 in the cell culture medium. All mutants were analyzed with the flow cytometric technique and were divided into two different groups. We conclude that the drug resistance of the first group of cell lines was due to changes in transport proteins. The second group of the resistant cell lines was characterized by an enhanced dissociation of the bisbenzimidazole dye-DNA complex. As we believe, the enhanced level of "DNA clearing" was caused by the amplification of some genes, because the gradual increase of Hoechst resistance in the same cell line resulted from the increase in the ability to remove the dye from DNA. These lines were shown to be also resistant to netropsin.  相似文献   

9.
The cell types in Sertoli cell-enriched cultures can be identified by using the DNA-specific fluorochrome Hoechst 33342 staining. This simple, rapid and reproducible procedure can be used with fixed and living cells. The peritubular myoid cells can be distinguished from the Sertoli cells in Sertoli cell-enriched cultures by the characteristic staining pattern obtained using Hoechst 33342 dye. Those cells identified as peritubular myoid cells by the characteristic DNA staining also interacted with the anti-fibronectin antibody determined by an immunocytochemical method while the Sertoli cells did not. The described staining method is valuable in assessing the presence of peritubular myoid cells in Sertoli cell-enriched cultures.  相似文献   

10.
Summary The cell types in Sertoli cell-enriched cultures can be identified by using the DNA-specific fluorochrome Hoechst 33342 staining. This simple, rapid and reproducible procedure can be used with fixed and living cells. The peritubular myoid cells can be distinguished from the Sertoli cells in Sertoli cell-enriched cultures by the characteristic staining pattern obtained using Hoechst 33342 dye. Those cells identified as peritubular myoid cells by the characteristic DNA staining also interacted with the anti-fibronectin antibody determined by an immunocytochemical method while the Sertoli cells did not. The described staining method is valuable in assessing the presence of peritubular myoid cells in Sertoli cell-enriched cultures.  相似文献   

11.
Adamski D  Mayol JF  Platet N  Berger F  Hérodin F  Wion D 《FEBS letters》2007,581(16):3076-3080
Accumulative evidence demonstrates that normal as well as cancer stem cells can be identified as a side population following Hoechst 33342 staining and flow cytometric analysis. This popular method is based on the ability of stem cells to efflux this fluorescent vital dye. We demonstrate that Hoechst 33342 can affect cell differentiation, suggesting potential complications in the interpretation of data.  相似文献   

12.
This study was undertaken to evaluate the effects of Hoechst staining on nuclear maturation and fertilisation when used at different stages of in vitro maturation (IVM) in prepubertal goat oocytes. Oocytes were matured in TCM1999 supplemented with 10% fetal bovine serum, 10 microg LH/ml, 10 microg FSH/ml and 1 microM 17beta-estradiol for 27 h. Frozen-thawed sperm cells were prepared by centrifugation in a discontinuous Percoll gradient and resuspended in DMH medium with 20% steer serum. Oocytes were fertilised in DMH medium with 7.75 mM calcium lactate. During IVM oocytes were exposed to 0.5 microg/ml of Hoechst 33342 staining and to ultraviolet light for a mean time of 3 s at 0 h, 8 h, 15 h, 20 h and 27 h. The percentage of metaphase II oocytes decreased significantly when oocytes were stained with Hoechst dye at 0 h, 8 h and 15 h of IVM. There was a decrease in total fertilisation rate and normal fertilisation rate of Hoechest-stained oocytes, independently of the time of Hoechst staining. Hoechst staining produces a significant reduction in oocyte viability when it is used in the early stages of in vitro maturation.  相似文献   

13.
This study was designed to evaluate the effects of vital dye Hoechst 33342 (HO 33342), at concentrations used to obtain a good DNA histogram resolution, on DNA integrity, cell growth, and cell-cycle phase distribution of L1210 cells. HO 33342 exposure for 2 h, at 37 degrees C produced DNA single-strand breaks as assessed by the method of alkaline elution. DNA single-strand breaks were concentration dependent (in the range .5-5 micrograms/ml) and increased significantly when HO 33342 (0.5-1.5 micrograms/ml) was associated with exposure in a flow cytometer to U.V. laser beam illumination. HO 33342 produced a cytotoxic effect on cell growth even at the concentration of 0.5 microgram/ml--a concentration ten-fold smaller than those required to obtain a good DNA histogram resolution. HO 33342 produced a severe block of the cells in the G2-M phase of the cell cycle already evident 24 h after stain exposure and continuing up to 144 h after start of recovery. A new polyploid cell population (with a 4 c DNA content) not present in the unstained cells was already evident 24 h after dye exposure. The data shown in the present paper would imply caution in using sorted cells stained with HO 33342 dye for biological, biomedical, and pharmacological studies.  相似文献   

14.
For flow cytometry-based detection as well as susceptibility testing and counting, staining of the bacterial cells is essential. In an attempt to develop rapid preparatory procedures for nucleic acid staining of wild type Gram positive bacteria, the uptake of fluorescent dyes in viable S. aureus, E. faecalis, and B. cereus cells was studied by flow cytometry under conditions intended to block probe efflux and increase cell wall permeability. The aim of the study was to develop procedures which allow rapid nucleic acid staining independent of fixation, since ethanol fixation is time-consuming and may mask phenomena associated with viability and lead to uncontrolled loss and aggregation of cells. The dye uptake was measured repeatedly after treating cells with metabolic inhibitors in order to block probe efflux, or cold shock (0 degree C) to increase permeability. The probes used were mithramycin (Mi), ethidium bromide (EB), DAPI, Hoechst 33342 and Hoechst 33258. None of the procedures facilitated uptake of the dyes to a level similar to that obtained in fixed control cells in all of the species. After metabolic inhibition of B. cereus cells, DAPI and Hoechst fluorescence increased to a level similar to or above that found in fixed cells, indicating that the uptake of these dyes is limited by energy-dependent efflux. A similar increase of DAPI fluorescence was observed after cold shock suggesting the uptake of this dye to be limited also by permeability in B. cereus. The Mi and EB fluorescence increased to the level of the fixed control cells under all conditions tested, suggesting free probe influx in this species. Generally, probe uptake in S. aureus and E. faecalis was lower than in B. cereus cells, and no permeabilizing effect of cold shock was observed. In some experiments the fluorescence exceeded that of ethanol fixed control cells, indicating that the fixation may cause conformational changes in DNA.  相似文献   

15.
Side-population (SP) cells have been shown to be highly enriched stem cells. We investigated whether an immortalized, nontumorigenic human liver cell line, THLE-5b, contains SP cells. Flow cytometry analysis after Hoechst 33342 staining demonstrated that the THLE-5b line contained a small component of SP cells. These SP cells were essentially eliminated by treatment with verapamil and expressed higher levels of ABCG2 mRNA than non-SP cells. In addition, the level of these SP cells detected by Hoechst 33342 staining was affected by the experimental conditions including the incubation medium. This is the first report of the presence of SP cells in the immortalized, nontumorigenic human liver cell line.  相似文献   

16.
Conditions for rapid vital staining of Plasmodium falciparum infected human erythrocytes were 1 microgram/ml of the dye Hoechst 33342 for 15 min in the standard culture medium at 37 degrees C. Fixed and stained cultures were analyzed by fluorescence microscopy and flow cytophotometry. The usefulness of this type of analysis for in vitro studies of antimalarial agents was demonstrated using three such agents--cyclosporin A, chloroquine, and pyrimethamine.  相似文献   

17.
Summary The effect of staining cellular DNA with the bisbenzimidazole dye Hoechst 33342 on the colony forming efficiency of Chinese Hamster Ovary Cells in different cell cycle phases has been studied. Exposures of 90 and 120 min to 5 M Hoechst 33342 provided a considerable loss of clonogenicity depending on the cycle phase at staining procedure. The G2+M cells reveal to be the most sensitive fraction followed by the G1 cells. The highest resistance was found on S-phase cells with a colony forming efficiency exceeding that of the G2+M fraction by a factor of two.  相似文献   

18.
Hoechst 33342 staining of multicell spheroids, three-dimensional cell clusters grown in vitro, results in a marked gradient of cellular fluorescent intensities inward from the spheroid periphery. The penetration of the dye is concentration and time dependent, so staining can be coupled with fluorescence activated cell sorting techniques to allow disaggregated single cells to be sorted or selected according to their degree of staining and therefore their depth within the spheroid. We have found the staining procedure to be highly reproducible, and to result in minimal toxicity even to the more brightly staining external cells. Comparison of this technique with others for cell selection suggests that increased resolution is available with the Hoechst technique.  相似文献   

19.
The secondary multidrug transporter LmrP of Lactococcus lactis mediates the efflux of Hoechst 33342 from the cytoplasmic leaflet of the membrane. Kinetic analysis of Hoechst 33342 transport in inside-out membrane vesicles of L. lactis showed that the LmrP-mediated H(+)/Hoechst 33342 antiport reaction obeyed Michaelis-Menten kinetics, with a low apparent affinity constant of 0.63 microM Hoechst 33342 (= 0.5 mmol Hoechst 33342/mol phospholipid). Several drugs significantly inhibited LmrP-mediated Hoechst 33342 transport through a direct interaction with the protein rather than through dissipation of the proton motive force or reduction of the membrane partitioning of Hoechst 33342. The characterization of the mechanism of inhibition of LmrP-mediated Hoechst 33342 transport indicated competitive inhibition by quinine and verapamil, noncompetitive inhibition by nicardipin and vinblastin, and uncompetitive inhibition by TPP(+). The three types of inhibition of LmrP-mediated Hoechst 33342 transport in inside-out membrane vesicles indicate for the first time the presence of multiple drug interaction sites in a secondary multidrug transporter.  相似文献   

20.
Stem cells possess enormous therapeutic potential in tissue replacement. To study stem cells further, they must be isolated. Techniques are available for enrichment and study of hematopoietic stems cells, but thus far, techniques for purification of spermatogonial stem cells have not been described. Enrichment techniques for hematopoietic stem cells include the use of fluorescence-activated cell sorter analysis with Hoechst 33342 and rhodamine 123 (Rho) dyes. Use of Hoechst dye to isolate spermatogonial stem cells has been unsuccessful in our laboratory, and our results have conflicted with those from other laboratories. Taking advantage of the differential staining of the Rho dye, we report a novel method to enrich murine spermatogonial stem cells. Testicular cells are harvested from cryptorchid ROSA26 male mice. Populations of these cells are then stained with the Hoechst and Rho dyes, allowing them to be sorted by flow cytometry into a side population (SP) of Hoechst low-intensity cells and populations of low (Rho(low)) or high (Rho(hi)) fluorescent intensity. Sterile recipients, W/W(v) mice, with an intrinsic germ cell deficiency were transplanted with the Hoechst SP cells, Rho(low), Rho(hi), and nonsorted donor cells. No spermatogonial stem cell colonies were derived from the Hoechst SP cells. The number of spermatogonial stem cell colonies from transplanted Rho(low) cells showed a 17- and 20-fold enrichment over those of Rho(hi) and nonsorted cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号