首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The simplified triple-test cross (sTTC) is a mating design that, because of its economic use of the experimental material as compared with other designs, seems very attractive. In theory, its power is almost equal to that of more elaborate designs such as the diallel cross. To evaluate the merits of both designs in a genetic analysis of mouse behavior, the results of a previous replicated 4×4 diallel cross (Crusio and van Abeelen 1986) were reanalyzed as a sTTC. We found that, at least with the fairly low number of strains employed, the sTTC analysis is clearly inferior to the diallel cross. This finding, in combination with some theoretical considerations, leads to the conclusion that the sTTC design is not a very useful one for such studies.  相似文献   

2.
Liu Y  Zeng ZB 《Genetical research》2000,75(3):345-355
Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the efficiency of a QTL mapping study. A general statistical method using mixture model procedures and the EM algorithm is developed for mapping QTL from various cross designs of multiple inbred lines. The general procedure features three cross design matrices, W, that define the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies the genetic model used in multiple line crosses. By appropriately specifying W matrices, the statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate specification for the D matrix, the method can be used to analyse different kinds of cross populations, such as F2 backcross, four-way cross and mixed crosses (e.g. combining backcross and F2). Simulation studies were conducted to explore the properties of the method, and confirmed its applicability to diverse experimental designs.  相似文献   

3.
Zeng W  Ghosh S  Li B 《Genetical research》2004,83(2):143-154
Diallel mating is a frequently used design for estimating the additive and dominance genetic (polygenic) effects involved in quantitative traits observed in the half- and full-sib progenies generated in plant breeding programmes. Gibbs sampling has been used for making statistical inferences for a mixed-inheritance model (MIM) that includes both major genes and polygenes. However, using this approach it has not been possible to incorporate the genetic properties of major genes with the additive and dominance polygenic effects in a diallel mating population. A parent block Gibbs sampling method was developed in this study to make statistical inferences about the major gene and polygenic effects on quantitative traits for progenies derived from a half-diallel mating design. Using simulated data sets with different major and polygenic effects, the proposed method accurately estimated the major and polygenic effects of quantitative traits, and possible genotypes of parents and progenies. The impact of specifying different prior distributions was examined and was found to have little effect on inference on the posterior distribution. This approach was applied to an experimental data set of Loblolly pine (Pinus taeda L.) derived from a 6-parent half-diallel mating. The result indicated that there might be a recessive major gene affecting height growth in this diallel population.  相似文献   

4.
The impact of four mating designs on selection response for leaf area was assessed at four different population sizes, using fast-cycling Brassica rapa L. Mating designs were either balanced (partial diallel or pair mating) or unbalanced (factorial mating designs with either one or two testers). When balanced, the mating designs required different numbers of crossings for the same number of parents: the partial diallel design, in the configuration retained here, required three times as many crossings as pair mating. Population sizes were 4, 8, 16, and 32. The percentage of selected individuals was kept constant at 25%. Despite an average estimated heritability around 0.4, the overall response to selection after five generations was fairly weak in all three replicates. For a given population size, selection response was larger under balanced mating designs than under unbalanced ones. There was no difference among balanced mating designs. Both results indicate that effective population size is more important than population size or the number of crossings in maintaining genetic gain.  相似文献   

5.
Lou XY  Yang MC 《Genetica》2006,128(1-3):471-484
A genetic model is developed with additive and dominance effects of a single gene and polygenes as well as general and specific reciprocal effects for the progeny from a diallel mating design. The methods of ANOVA, minimum norm quadratic unbiased estimation (MINQUE), restricted maximum likelihood estimation (REML), and maximum likelihood estimation (ML) are suggested for estimating variance components, and the methods of generalized least squares (GLS) and ordinary least squares (OLS) for fixed effects, while best linear unbiased prediction, linear unbiased prediction (LUP), and adjusted unbiased prediction are suggested for analyzing random effects. Monte Carlo simulations were conducted to evaluate the unbiasedness and efficiency of statistical methods involving two diallel designs with commonly used sample sizes, 6 and 8 parents, with no and missing crosses, respectively. Simulation results show that GLS and OLS are almost equally efficient for estimation of fixed effects, while MINQUE (1) and REML are better estimators of the variance components and LUP is most practical method for prediction of random effects. Data from a Drosophila melanogaster experiment (Gilbert 1985a, Theor appl Genet 69:625–629) were used as a working example to demonstrate the statistical analysis. The new methodology is also applicable to screening candidate gene(s) and to other mating designs with multiple parents, such as nested (NC Design I) and factorial (NC Design II) designs. Moreover, this methodology can serve as a guide to develop new methods for detecting indiscernible major genes and mapping quantitative trait loci based on mixture distribution theory. The computer program for the methods suggested in this article is freely available from the authors.  相似文献   

6.
A recombinant inbred intercross (RIX) is created by generating diallel F1 progeny from one or more panels of recombinant inbred (RI) strains. This design was originally introduced to extend the power of small RI panels for the confirmation of quantitative trait loci (QTL) provisionally detected in a parental RI set. For example, the set of 13 C × B (C57BL/6ByJ × BALB/cByJ) RI strains can, in principle, be supplemented with 156 isogenic F1s. We describe and test a method of analysis, based on a linear mixed model, that accounts for the correlation structure of RIX populations. This model suggests a novel permutation algorithm that is needed to obtain appropriate threshold values for genome-wide scans of an RIX population. Despite the combinational multiplication of unique genotypes that can be generated using an RIX design, the effective sample size of the RIX population is limited by the number of progenitor RI genomes that are combined. When using small RI panels such as the C × B there appears to be only modest advantage of the RIX design when compared with the original RI panel for detecting QTLs with additive effects. The RIX, however, does have an inherent ability to detect dominance effects, and, unlike RI strains, the RIX progeny are genetically reproducible but are not fully inbred, providing somewhat more natural genetic context. We suggest a breeding strategy, the balanced partial RIX, that balances the advantage of RI and RIX designs. This involves the use of a partial RIX population derived from a large RI panel in which the available information is maximized by minimizing correlations among RIX progeny.  相似文献   

7.
Kao CH 《Genetics》2006,174(3):1373-1386
In the data collection of the QTL experiments using recombinant inbred (RI) populations, when individuals are genotyped for markers in a population, the trait values (phenotypes) can be obtained from the genotyped individuals (from the same population) or from some progeny of the genotyped individuals (from the different populations). Let Fu be the genotyped population and Fv (v>or=u) be the phenotyped population. The experimental designs that both marker genotypes and phenotypes are recorded on the same populations can be denoted as (Fu/Fv, u=v) designs and that genotypes and phenotypes are obtained from the different populations can be denoted as (Fu/Fv, v>u) designs. Although most of the QTL mapping experiments have been conducted on the backcross and F2(F2/F2) designs, the other (Fu/Fv, v>or=u) designs are also very popular. The great benefits of using the other (Fu/Fv, v>or=u) designs in QTL mapping include reducing cost and environmental variance by phenotyping several progeny for the genotyped individuals and taking advantages of the changes in population structures of other RI populations. Current QTL mapping methods including those for the (Fu/Fv, u=v) designs, mostly for the backcross or F2/F2 design, and for the F2/F3 design based on a one-QTL model are inadequate for the investigation of the mapping properties in the (Fu/Fv, uor=u) designs. In addition, the QTL mapping properties of the proposed and approximate methods in different designs are discussed. Simulations were performed to evaluate the performance of the proposed and approximate methods. The proposed method is proven to be able to correct the problems of the approximate and current methods for improving the resolution of genetic architecture of quantitative traits and can serve as an effective tool to explore the QTL mapping study in the system of RI populations.  相似文献   

8.
Klasen JR  Piepho HP  Stich B 《Heredity》2012,108(6):626-632
A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.  相似文献   

9.
We present a general regression-based method for mapping quantitative trait loci (QTL) by combining different populations derived from diallel designs. The model expresses, at any map position, the phenotypic value of each individual as a function of the specific-mean of the population to which the individual belongs, the additive and dominance effects of the alleles carried by the parents of that population and the probabilities of QTL genotypes conditional on those of neighbouring markers. Standard linear model procedures (ordinary or iteratively reweighted least-squares) are used for estimation and test of the parameters.  相似文献   

10.
Improvements in the usefulness of QTL analysis arise from better statistical methods applied to the problem, ability to analyze more complex mating designs, and the fitting of less simplified genetic models. Here we review the advantages of different plant mating designs in QTL analysis and conclude that diallel designs have several favorable properties. We then turn to the detection of systematic genome-wide synergistic epistasis. This form of epistasis has important implications from evolutionary (maintenance of sexual reproduction and concealment of cryptic genetic variation) and practical perspectives (response to pyramided favorable alleles). We develop two methods for detecting systematic synergistic epistasis, one based on analyzing interactions between locus effects and predicted individual genotypic values and one based on analyzing pairwise locus interactions. Using the first method we detect synergistic epistasis in a barley and a wheat dataset but not in a maize dataset. We fail to detect synergistic epistasis with the second method. We discuss our results in the light of theoretical questions concerning the mechanisms of synergistic epistasis.  相似文献   

11.
Summary The partial diallel cross, the complete diallel cross, and the designs known as North Carolina Experiments 1 and 2 are compared for their usefulness in estimating heritability. It is first shown that reliable values for the sampling mean and variance of heritability estimates are obtained from approximate expressions based on the moments of the chi-square distribution. These expressions are then applied to determine the optimum experimental designs for a range of situations.The main basis for discrimination is the amount of information per unit, defined as i = 1/(N var( 2)), where 2 is the estimate of the heritability h 2 and N is the number of units in the experiment, either individuals or families.The two parameters considered were the heritability of individuals and the heritability of full-sib families, and for each of these the partial diallel cross was the most preferred, followed in decreasing order of preference by design NC2, the complete diallel, and design NC1.It is first shown that there is no optimum number of parents for a partial diallel cross or male parents for designs NC1 and NC2. The number of crosses per parent for a partial diallel or dams per sire for designs NC2 and NC2 should generally be six or less. Any expansion should be in the direction of using more parents in the case of the partial diallel, or more male parents in the case of designs NC1 and NC2. For the two heritability parameters considered in this study it is inefficient to increase the number of replicates beyond two.  相似文献   

12.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

13.

Key message

Testcross is the worst mating design to use as a training set to predict maize single-crosses that would be obtained through full diallel or North Carolina design II.

Abstract

Even though many papers have been published about genomic prediction (GP) in maize, the best mating design to build the training population has not been defined yet. Such design must maximize the accuracy given constraints on costs and on the logistics of the crosses to be made. Hence, the aims of this work were: (1) empirically evaluate the effect of the mating designs, used as training set, on genomic selection to predict maize single-crosses obtained through full diallel and North Carolina design II, (2) and identify the possibility of reducing the number of crosses and parents to compose these training sets. Our results suggest that testcross is the worst mating design to use as a training set to predict maize single-crosses that would be obtained through full diallel or North Carolina design II. Moreover, North Carolina design II is the best training set to predict hybrids taken from full diallel. However, hybrids from full diallel and North Carolina design II can be well predicted using optimized training sets, which also allow reducing the total number of crosses to be made. Nevertheless, the number of parents and the crosses per parent in the training sets should be maximized.
  相似文献   

14.
Summary For studying the inheritance of metric traits, diallel cross and factorial mating designs are commonly used. Since factorial mating design is less restrictive in crossing plans, the genetic information drawn from it was compared with that from a diallel cross. The comparison was made using graphical, genetic components and combining ability analyses for grain yield, grain weight and spike length in a field experiment of bread wheat (Triticum aestivum L.). Analyses were made on a nine parent diallel cross and a 4 × 5 factorial mating design which was sampled from the diallel cross. In general, there was a high degree of agreement between the results obtained from factorial mating design and diallel cross analyses showing thereby that the former provides almost equivalent genetic information to the latter.  相似文献   

15.
Recent papers have promoted the view that model‐based methods in general, and those based on Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are therefore inappropriate for the analysis of phylogeographic data. These papers further argue that Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical phylogeography. In order to remove the confusion and misconceptions introduced by these papers, we justify and explain the reasoning behind model‐based inference. We argue that ABC is a statistically valid approach, alongside other computational statistical techniques that have been successfully used to infer parameters and compare models in population genetics. We also examine the NCPA method and highlight numerous deficiencies, either when used with single or multiple loci. We further show that the ages of clades are carelessly used to infer ages of demographic events, that these ages are estimated under a simple model of panmixia and population stationarity but are then used under different and unspecified models to test hypotheses, a usage the invalidates these testing procedures. We conclude by encouraging researchers to study and use model‐based inference in population genetics.  相似文献   

16.
Epistatic interactions among quantitative trait loci (QTL) contribute substantially to the variation in complex traits. The main objectives of this study were to (i) compare three- vs. four-step genome scans to identify three-way epistatic interactions among QTL belonging to a metabolic pathway, (ii) investigate by computer simulations the power and proportion of false positives (PFP) for detecting three-way interactions among QTL in recombinant inbred line (RIL) populations derived from a nested mating design, and (iii) compare these estimates to those obtained for detecting three-way interactions among QTL in RIL populations derived from diallel and different partial diallel mating designs. The single-nucleotide polymorphism haplotype data of B73 and 25 diverse maize inbreds were used to simulate the production of various RIL populations. Compared to the three-step genome scan, the power to detect three-way interactions was higher with the four-step genome scan. Higher power to detect three-way interactions was observed for RILs derived from optimally allocated distance-based designs than from nested designs or diallel designs. The power and PFP to detect three-way interactions using a nested design with 5000 RILs were for both the 4-QTL and the 12-QTL scenario of a magnitude that seems promising for their identification.  相似文献   

17.
A genetic model was proposed to simultaneously investigate genetic effects of both polygenes and several single genes for quantitative traits of diploid plants and animals. Mixed linear model approaches were employed for statistical analysis. Based on two mating designs, a full diallel cross and a modified diallel cross including F2, Monte Carlo simulations were conducted to evaluate the unbiasedness and efficiency of the estimation of generalized least squares (GLS) and ordinary least squares (OLS) for fixed effects and of minimum norm quadratic unbiased estimation (MINQUE) and Henderson III for variance components. Estimates of MINQUE (1) were unbiased and efficient in both reduced and full genetic models. Henderson III could have a large bias when used to analyze the full genetic model. Simulation results also showed that GLS and OLS were good methods to estimate fixed effects in the genetic models. Data on Drosophila melanogaster from Gilbert were used as a worked example to demonstrate the parameter estimation. Received: 11 November 2000 / Accepted: 2 May 2001  相似文献   

18.
Genomic control for association studies   总被引:96,自引:0,他引:96  
Devlin B  Roeder K 《Biometrics》1999,55(4):997-1004
A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient method to assess SNP genotypes are expected to be available in the near future. An outstanding question is how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve this goal, we propose a statistical method that has several optimal properties: It can be used with case control data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to better performance in many settings while still constraining risk for false positives. The performance of our genomic control method is quite good for plausible effects of liability genes, which bodes well for future genetic analyses of complex disorders.  相似文献   

19.
Experimental designs are definded by introducing an assignment matrix Z. It is shown by block designs and double block designs that using Z or an operator on Z otherwise defined, well known designs can be got as special cases. Till now we didn' find an experimental design which could not be defined by our matrix Z. The definitions of properties of experimental designs can be given independently of the model of the statistical analysis. This is shown for the property of balance of block designs.  相似文献   

20.
We determined the genetic basis of several traits related to overall fitness of Aquilegia caerulea, a perennial herb of the Rocky Mountains in western North America. To obtain measures of heritability relevant to the evolutionary potential of wild populations, we performed full and partial diallel crosses and studied progeny performance in the field. Based on a joint analysis of two designs with a total of 18 parents and 102 crosses, we detected significant maternal variance for seed mass and emergence time, but this component was negligible for later-expressed traits. Low heritability and evidence that maternal effects on seed mass are largely environmental suggest that in this population there is little evolutionary potential for change in seed mass under conditions experienced during the study. Seed mass varied depending on particular combinations of parents and cross direction. Such an interaction can have several different biological interpretations, including that particular maternal parents selectively provision embryos sired by particular pollen genotypes. Width of the first true leaf after 4 wk of growth and leaf size of juvenile plants at years one and two were significantly heritable and positively genetically correlated. Juvenile survival exhibited significant dominance variance, as expected from evidence of inbreeding depression in this trait. In contrast, for other traits that exhibit inbreeding depression in this population (seed mass and third-year leaf size), dominance variance was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号