首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In guinea pig periotoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

2.
Fluoride-mediated activation of guinea pig neutrophils   总被引:1,自引:0,他引:1  
In guinea pig peritoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

3.
Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.  相似文献   

4.
Evidences have been provided in our laboratory that in neutrophils different signal transduction sequences for the activation of O2(-)-forming NADPH oxidase can be triggered by the same stimulus (Biochem. Biophys. Res. Commun. 1986, 135, 556-565; 1986, 135, 785-794; 1986, 140, 1-11). The results presented here show that the transduction sequence triggered by fluoride via dissociation of G-proteins and involving messengers produced by stimulation of phosphoinositide turnover, Ca2+ changes and translocation of protein kinase C from the cytosol to the plasmamembrane, can be bypassed when a primed state of neutrophils is previously induced. In fact: i) fluoride causes a pertussis toxin insensitive and H-7 sensitive respiratory burst in human neutrophils, which is linked to the activation of hydrolysis of PIP2, rise in [Ca2+]1 and translocation of PKC. In Ca2+-depleted neutrophils these responses to fluoride do not occur and are restored by addition of CaCl2. ii) The pretreatment of Ca2+-depleted unresponsive neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase by fluoride but not the turnover of phosphoinositides and PKC translocation. The nature of the alternative transduction sequence, the reactions different from phospholipase C activated by G-protein for the alternative sequence and the role of these discrete pathways for NADPH oxidase activation are discussed.  相似文献   

5.
The addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) to human peripheral blood neutrophils primes phospholipase D (PLD) to subsequent stimulation by N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). The present investigation was directed at the elucidation of the pathway(s) involved in the regulation of the activity of PLD in untreated as well as in GM-CSF-primed neutrophils. Pretreatment with pertussis toxin (PT) totally inhibited fMLP-induced activation of PLD in control or GM-CSF-treated cells. PT did not affect the activation of PLD by PMA but inhibited the priming effect of GM-CSF. Activation of PLD by fMLP was dose-dependently inhibited by erbstatin, an inhibitor of tyrosine kinases. Furthermore, pre-incubation with GM-CSF accelerated the tyrosine phosphorylation response to fMLP (as analysed by protein immunoblot with antiphosphotyrosine antibodies). In PMA-stimulated neutrophils, erbstatin antagonized the priming effect of GM-CSF on PLD without affecting the direct effects of the phorbol ester. Buffering cytoplasmic calcium with the chelator BAPTA inhibited fMLP-induced activation of PLD as monitored by the formation of phosphatidylethanol. The stimulation of PLD by PMA was partially attenuated in BAPTA-loaded cells while the priming effect of GM-CSF was abolished. Thus, priming of human neutrophil PLD by GM-CSF may be mediated by G-proteins, by increases in the levels of cytosolic free calcium, and by stimulation of protein kinase C and/or tyrosine kinase(s).  相似文献   

6.
A specific stimulation of tubulin tyrosinolation in human neutrophils (PMNs) is induced by the synthetic peptide chemoattractant N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), and this stimulation is closely associated with activation of the NADPH oxidase-mediated respiratory burst (Nath, J., and Gallin, J. I. (1983) J. Clin. Invest. 71, 1273-1281). In contrast, along with tubulin tyrosinolation, a distinctly different respiratory burst-associated random posttranslational incorporation of tyrosine into multiple PMN proteins is observed in PMNs stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or sn-1,2-dioctanoylglycerol (DAG). In studies exploring the mechanism(s) of signal transduction for these distinct neutrophil responses, we found that the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation in PMNs and in differentiated HL-60 cells is completely blocked by pertussis toxin, while the PMA-induced random incorporation of tyrosine is not inhibited. We also found that expression of the fMet-Leu-Phe-mediated stimulation of tubulin tyrosinolation in HL-60 cells is correlated with increases in the specific activity of protein kinase C and with the acquisition of respiratory burst activity which occur during induced myeloid maturation of these cells. Furthermore, both the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation and the PMA or DAG-induced random posttranslational incorporation of tyrosine into multiple proteins in activated neutrophils, were found to be reversibly inhibited (greater than 70%) by the protein kinase inhibitors 1-(5-isoquinolinesulfonyl)piperazine (C-I) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), in parallel with inhibition of superoxide (O2-) generation. In related studies, we also found that fMet-Leu-Phe-stimulated O2- production is comparably inhibited by C-I and H-7, but in a highly temperature-dependent manner. Inhibition was observed only when C-I or H-7 is added to PMNs at physiologic temperature, i.e. 37 degrees C. Interestingly, inhibition of the PMA-induced O2- generation by C-I or H-7 was not found to be similarly temperature-dependent. Considered together, these findings argue against the suggestion that there is a protein kinase C-independent pathway for activation of the respiratory burst in neutrophils stimulated with N-formyl peptides.  相似文献   

7.
Preincubation of neutrophils with certain agonists may "prime" the cells to cause increased responses to a second stimulus ("primed stimulation"). We used two approaches to examine the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in priming and stimulation by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and N-formyl-Met-Leu-Phe (fMLP): inhibition of protein kinase C by 1-(5-isoquinolinesulfonyl)-piperazine (C-I) and measurement of protein kinase C translocation induced by priming and stimulatory concentrations of OAG. C-I had little effect on stimulation or primed stimulation by fMLP, suggesting that fMLP invokes events independent of protein kinase C. C-I equally inhibited stimulation and primed stimulation by PMA. Direct stimulation by OAG was inhibited, but priming and primed stimulation by OAG was unaltered by C-I. OAG concentrations greater than or equal to 100 microM caused translocation of protein kinase C, in correlation with direct stimulation of the respiratory burst. Lower OAG concentrations (10-30 microM) primed to stimulation by fMLP and, conversely, stimulated neutrophils primed with fMLP, yet did not cause translocation of protein kinase C. The data are compatible with previous assumptions that PMA and OAG directly stimulate polymorphonuclear neutrophil leukocytes by translocation and activation of protein kinase C. However, priming and primed stimulation by OAG apparently invoke distinct transduction mechanisms other than protein kinase C translocation.  相似文献   

8.
Treatment of rabbit neutrophils with pertussis toxin, but not cholera toxin, inhibits the increases produced by formylmethionyl-leucyl-phenylalanine, leukotriene B4 and the calcium ionophore A23187 in the amounts of actin associated with the cytoskeletons. The increase in the cytoskeletal actin produced by phorbol 12-myristate, 13-acetate on the other hand is not affected by pertussis toxin. Incubation of the neutrophils with cholera toxin, unlike pertussis toxin, did not inhibit the fMet-Leu-Phe induced rise in the intracellular concentration of free calcium, and caused only a shift to the right of the dose-response curve of N-acetyl-beta-glucosaminidase release. This shift was more marked in the presence of 1-methyl-3-isobutylxanthine. In addition, the stimulated breakdown of phosphatidylinositol 4,5 bis-phosphate was inhibited by pertussis toxin. These results suggest that pertussis toxin acts at an early step in the signal transduction and does not affect the sequence of reactions initiated by the activation of the protein kinase C. Furthermore, the guanine nucleotide regulatory protein Gi, but not Gs, is closely involved in signal transduction in these cells.  相似文献   

9.
Previous studies demonstrating hydrolysis of phosphatidylinositol bisphosphate (PIP2) and generation of inositol phosphates in neutrophils exposed to 20.0 mM NaF provide indirect evidence that activation of phospholipase-associated guanine nucleotide regulatory protein, a guanine nucleotide binding protein which regulates the activation of a membrane inositol-specific phospholipase C, is an early event in the neutrophil stimulus-response pathway triggered by fluoride. Consistent with this hypothesis, exposure of a plasma membrane rich preparation isolated from 32P labeled neutrophils to 20.0 mM NaF resulted in hydrolysis of labeled PIP2. Levels of other phospholipids were not affected. Inositol bisphosphate and inositol trisphosphate were detected in extracts of neutrophil plasma membranes exposed to fluoride. To further explore the involvement of guanine nucleotides in functional responses of intact neutrophils triggered by fluoride, we preincubated cells with 2-beta-D-ribofuranosylthiazole-4-carboxamide (tiazofurin), a selective inhibitor of inosine monophosphate dehydrogenase, to diminish guanine nucleotide synthesis and then compared superoxide generation induced by FMLP, PMA, digitonin, and 20.0 mM NaF to intracellular levels of guanine nucleotides. Preincubation of neutrophils for 2.5 h at 37 degrees C with tiazofurin resulted in dose-dependent depletion of GTP and GDP. Maximal depletion of guanine nucleotides required relatively high levels of tiazofurin (200 to 400 microM) and resulted in a 55 to 60% reduction of GTP and GDP. The effects of tiazofurin on guanine nucleotides levels were not observed when neutrophils were preincubated at 4 degrees C. AT 37 degrees C, tiazofurin also decreased intracellular ATP and ADP levels but adenine nucleotide depletion was less pronounced than guanine nucleotide depletion for each concentration of tiazofurin used. When tiazofurin was removed by washing cells after incubation, adenine nucleotide quickly returned to preincubation values but guanine nucleotide levels remained depressed. Addition of exogenous guanosine (200 microM) prevented tiazofurin-dependent depletion of guanine nucleotides but had no influence on adenine nucleotide depletion. Superoxide released triggered by FMLP and F- was inhibited to an extent similar to that of guanine nucleotide depletion under different conditions of preincubation. Inhibition of superoxide release was not observed if cells were preincubated at 4 degrees C, was not rapidly reversible, and was not observed when guanosine was added with tiazofurin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Pre-treatment of neutrophils with either pertussis or cholera toxins does not inhibit neutrophil activation by surface bound IgG. In contrast, pretreatment with the phorbol ester, phorbol myristate acetate, results in a dose dependent inhibition of degranulation by surface bound IgG. This inhibition is similar to that seen with soluble ligands where it is thought to be due to interference with the interaction of an activated guanine nucleotide binding protein with phospholipase C (J. Biol. Chem.,262,6121,1987). More directly, GTP binding and GTPase activity are enhanced when human neutrophil membranes are incubated in wells containing surface bound IgG. Neither of these G protein functions were inhibited when membranes were prepared in the presence of pertussis toxin, suggesting that neutrophil activation by surface bound IgG proceeds by a mechanism that involves a pertussis toxin insensitive G protein.  相似文献   

11.
Dynamics of the diradylglycerol responses of stimulated phagocytes   总被引:3,自引:0,他引:3  
The generation of diradylglycerols (sn-1,2 diacylglycerols (DAG) and 1-O-alkyl-2-acylglycerols (AAG] was investigated in human polymorphonuclear leukocytes stimulated with fMet-Leu-Phe, phorbol myristate acetate (PMA), or A23187. With each stimulus, the elevations in the mass of DAG clearly preceded that of AAG. The levels of both lipids increased over time, peaked by 15-20 min (fMet-Leu-Phe) or 45-60 min (PMA or A23187) and returned slowly toward base line thereafter. The base-line levels of DAG were some 4-fold higher than levels of AAG. On stimulation, the relative increases in AAG (approximately 4-fold, fMet-Leu-Phe; approximately 20-fold, PMA and A23187) were much greater than the corresponding relative increases in the levels of DAG (approximately 2-fold fMet-Leu-Phe; approximately 5-fold, PMA and A23187). The diradylglycerol responses were dependent upon agonist concentration. Prior treatment with cytochalasin B augmented the fMet-Leu-Phe diradylglycerol responses but did not alter unstimulated or PMA- or A23187-stimulated diradylglycerol responses. Depletion of extracellular Ca2+ blocked responses to fMet-Leu-Phe, but not to PMA. Treatment with pertussis toxin: (a) completely blocked the responses to fMet-Leu-Phe, (b) slightly suppressed the AAG but not the DAG response to PMA, and (c) did not affect the responses to A23187. Gas chromatographic/mass spectral analyses indicated that the AAG generated during cell activation consists of a mixture of species differentiated by 1-O-alkyl chains of 16:0, 18:0, 18:1 and an additional species that remains uncharacterized. Since DAG and AAG are reportedly activators and inhibitors, respectively, of protein kinase C activities, the sequential generation of these lipid messengers may provide for a system to critically control the activation of protein kinase C.  相似文献   

12.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

13.
We have shown that platelet-activating factor (PAF), a weak primary stimulus for neutrophil superoxide generation, synergistically enhances neutrophil oxidative responses to the tumor promoter phorbol myristate acetate (PMA). Since PMA is known to cause cytosol-to-membrane shift of calcium-activated, phospholipid-dependent protein kinase (protein kinase c, PKC) in human neutrophils, we investigated the role of PAF in modifying PMA-induced PKC activation/translocation. Protein kinase activity was measured as the incorporation of 32P from gamma-32P-ATP into histone H1 induced by enzyme in cytosolic and particulate fractions from sonicated human neutrophils. PAF did not alter the sharp decrease in cytosolic PKC activity induced by PMA. However, in the presence of PAF and PMA, total particulate protein kinase activity increased markedly over that detected in the presence of PMA alone (144 +/- 9 pmoles 32P/10(7)PMN/minute in cells treated with 20 ng/ml PMA compared to 267 +/- 24 pmoles 32P in cells exposed to PMA and 10(-6)M PAF). The increase in total particulate protein kinase activity was synergistic for the two stimuli, required the presence of cytochalasin B during stimulation, and occurred at PAF concentrations of 10(-7) M and above. Both PKC and calcium-, phospholipid-independent protein kinase activities in whole particulate fractions were augmented by PAF as were both activities in detergent-extractable particulate subfractions. PAF did not directly activate PKC obtained from control or PMA-treated neutrophils. However, the PKC-enhancing effect of PAF was inhibited in the absence of calcium during cellular stimulation. PAF also increased particulate protein kinase activity in cells simultaneously exposed to FMLP but the effect was additive for these stimuli. These results suggest that PAF enhances PMA-induced particulate PKC activity by a calcium-dependent mechanism. The enhancing effect of PAF may be directly involved in the mechanism whereby the phospholipid "primes" neutrophils for augmented oxidative responses to PMA.  相似文献   

14.
The subcellular distribution of G protein subunits in the neutrophil was examined. Cells were nitrogen cavitated and subcellular organelles fractionated on discontinuous sucrose gradients. The presence of GTP-binding regulatory protein (G protein) alpha and beta/gamma subunits in each organelle was determined using three methods of analysis: specific binding of guanine nucleotide, ADP ribosylation by pertussis toxin, and immunoblot analysis with subunit-specific G protein antibodies. Both plasma membrane and cytosolic G protein components were detected. In contrast, neither the specific nor the azurophilic granules contained detectable G protein. Based on the ability of exogenous G protein beta/gamma subunits to increase the ADP ribosylation of the cytosolic form of G protein and upon the hydrodynamic behavior of the cytosolic protein, it is likely that this represents an uncomplexed G protein alpha subunit. Proteolytic mapping with Staphylococcus aureus V8 protease suggests the soluble alpha subunit is from Gn, the major pertussis toxin substrate of human neutrophils. Using quantitative analysis, the levels of the 40-kD G protein alpha subunit and of the 35/36-kD beta subunit in the neutrophil membrane were determined.  相似文献   

15.
The rise in cytosolic free Ca2+, shape change, superoxide formation, and granule exocytosis induced in human neutrophils by N-formyl-Met-Leu-Phe (fMLP) and by a newly discovered activating peptide, neutrophil-activating factor, termed NAF, were compared. NAF was effective in the concentration range of 0.1-10 nM and was 10- to 100-fold more potent than fMLP. In qualitative terms, the single responses to either stimulus were remarkably similar: they showed virtually identical onset and initial kinetics, and were all inhibited by pretreatment of the neutrophils with Bordetella pertussis toxin. In addition, the respiratory burst elicited by either stimulus was inhibited by 17-hydroxywortmannin and staurosporine. Two conclusions are drawn from these results: 1) neutrophil activation by NAF (as by fMLP) is dependent on a GTP-binding protein and on protein kinase C; 2) a similar, or even identical, mechanism of signal transduction must be assumed on stimulation of human neutrophils with NAF, fMLP, and other chemotactic agonists. Human monocytes, lymphocytes, and platelets did not show cytosolic free Ca2+ changes when exposed to NAF, which suggests that NAF is selective for the neutrophils.  相似文献   

16.
Changes in intracellular ionized free calcium ([Ca]i), inositol triphosphate (IP3), and sn-1,2-diacylglycerol (DAG) were determined in relation to agonist-induced human neutrophil superoxide (O2-) production. With 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation, generation of IP3 and a peak rise in [Cai] occurred at 30 sec, preceding maximal O2- production (1.5 min) and the maximal rise in DAG mass (4 min). FMLP-induced O2- production was inhibited by pertussis toxin. In cytochalasin B-primed, concanavalin A (Con A) stimulated neutrophils, a peak rise in [Ca]i but not IP3 proceeded O2- production, and pertussis toxin did not inhibit O2- production. EGTA inhibited the cytochalasin B/fMLP-induced increment in [Ca]i and O2- production by 75% and 50%, respectively, and completely ablated the response to cytochalasin B/Con A, suggesting a role for extracellular as well as intracellular calcium in the respiratory burst. However, three types of experiments indicate that an increase in [Ca]i is neither sufficient nor always required for O2- production. First, treatment with ionomycin resulted in a marked increase in [Ca]i but did not cause O2- production. Second, pertussis toxin inhibited both fMLP-induced IP3 generation and O2- production but did not inhibit the rise in [Ca]i. Third, following neutrophil priming with dioctanoylglycerol (diC8), maximal O2- production occurred in response to 0.015 microM fMLP or Con A without a rise in [Ca]i, and diC8/fMLP-induced O2- production was not inhibited by EGTA. Taken together, these data suggest that 1) an increment in [Ca]i is not strictly essential for neutrophil O2- production, 2) unlike fMLP, Con A-induced O2- production does not proceed through a pathway involving the pertussis toxin-sensitive G protein, and 3) regulation of neutrophil [Ca]i involves mechanisms independent of IP3 concentration.  相似文献   

17.
Pertussis toxin as a probe of neutrophil activation   总被引:11,自引:0,他引:11  
In reviewing our own and other work, it is clear that pertussis toxin treatment of neutrophils causes a time- and concentration-dependent inhibition of granule enzyme secretion induced by formylmethionylleucylphenylalanine (fMet-Leu-Phe), C5a, leukotriene (LT) B4 and platelet-activating factor (PAF). Chemotaxis, O2- generation, aggregation, and arachidonic acid production induced by fMet-Leu-Phe are also inhibited by pertussis toxin. Granule enzyme release caused by A23187 or phorbol 12-myristate 13-acetate is not inhibited. The inhibition of neutrophil function correlates closely with the NAD-ribosylation of a 41,000-dalton protein in the neutrophil plasma membrane, presumably the GTP-binding regulatory protein Ni. Pertussis toxin treatment prevents or obtunds the increased influx of Ca2+ induced by fMet-Leu-phe and LTB4, but not that caused by stimulation of neutrophils with PAF. Pertussis toxin prevents the receptor-induced breakdown of polyphosphoinositides in intact neutrophils and isolated membrane and prevents or decreases the production of inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. The hypothesis advanced by us and others is that pertussis toxin interacts with a GTP-binding regulatory protein identical or similar to Ni, which couples receptor-chemotactic factor interaction to phospholipase C activation. Inhibition of the activation prevents the production of IP3 and the resulting release of Ca2+ from intracellular stores and of 1,2-diacylglycerol and thus, the activation of protein kinase C. The lack of these two mediators is the immediate cause of the depression of neutrophil activation resulting from pertussis toxin. Some of the limitations and uncertainties of our present knowledge with respect to this hypothesis are discussed.  相似文献   

18.
The regulation of thyroid hormone formation by thyrotropin and norepinephrine involves the activation of both phospholipases C and A2. When FRTL-5 cells are incubated with 10(-10)M pertussis toxin for 4 to 20 h, the stimulation of iodide efflux by norepinephrine is inhibited by 50 to 70%. At the same toxin concentration the norepinephrine induced increase in cytosolic Ca2+ is unaffected; however upon 20 h pretreatment with 10(-9)M pertussis toxin a 30% inhibition is observed. By contrast, the pertussis toxin treatment had no effect on the increase in iodide efflux or in cytosolic Ca2+ levels induced by thyrotropin. Our data suggest that two GTP binding proteins sensitive to pertussis toxin are involved in the alpha 1 adrenergic but not in the thyrotropin induced activation of the signal transduction mechanisms leading to iodide efflux in FRTL-5 cells.  相似文献   

19.
We studied the chemotactic peptide receptor/cytoskeletal interactions in HL-60 cells induced to differentiate with different agents and attempted to correlate these observations with the acquisition of different functional responses. Dibutyryl cyclic AMP-treated cells showed rapid superoxide anion production in response to N-formyl-methionyl-leucyl-phenylalanine (FMLP) and slow, sustained response to phorbol myristate acetate (PMA). Retinoic acid-induced cells showed a slow, sustained response to both FMLP and PMA. Interferon-gamma-treated cells produced no superoxide anion on stimulation with FMLP, whereas tumor necrosis factor (TNF)-treated cells showed a slight response. Chemotactic peptide receptor association was the same in the HL-60 cells treated with different agents, despite marked differences in the superoxide anion generation and actin polymerization responses to FMLP and PMA in these cells. In mature neutrophils chemotactic peptide receptor association with the cytoskeleton was not affected by either pertussis or cholera toxin. However, both toxins inhibited FMLP-induced actin polymerization and superoxide anion generation. This suggested involvement of a G-protein similar to Gt, rather than Gi or Gs. Neither toxin had any effect on PMA-induced superoxide anion generation. These observations indicate that receptor association with the cytoskeleton may not have a significant role in affecting signal recognition and response. Among the several possible roles suggested, clearance of the occupied receptors may be the most important role of the cytoskeletal association. HL-60 cells induced to differentiate with different agents (because of their varied functional responses) might prove very useful in dissecting the molecular mechanisms regulating stimulus-induced activation of neutrophils.  相似文献   

20.
The involvement of G regulatory proteins in muscarinic receptor signal transduction was examined in electrically permeabilized rat submandibular acinar cells. The guanine nucleotide analog, GTP gamma S, caused the dose dependent hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to release IP3. This response was insensitive to pertussis toxin treatment and was duplicated by NaF but not by GDP beta S. Enhanced IP3 synthesis was observed with a combination of GTP gamma S and carbachol. Exogenous IP3, as well as carbachol and GTP gamma S, provoked the release of sequestered 45Ca2+ from non-mitochondrial stores. In intact cells, carbachol significantly reduced the level of cyclic AMP induced by the beta-adrenergic agonist, isoproterenol, to 69% of its normal value. Pertussis toxin abolished this inhibitory action of carbachol on cyclic nucleotide levels. These results suggest that muscarinic receptors are coupled to two separate G regulatory proteins in submandibular mucous acini-the pertussis toxin-insensitive Gp of the phosphoinositide transduction pathway associated with elevated cytosolic calcium levels, and the pertussis toxin-sensitive Gi inhibitory protein of the adenylate cyclase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号