首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A W Shyjan  R Levenson 《Biochemistry》1989,28(11):4531-4535
We have developed a panel of antibodies specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the rat Na,K-ATPase. TrpE-alpha subunit isoform fusion proteins were used to generate three antisera, each of which reacted specifically with a distinct alpha subunit isotype. Western blot analysis of rat tissue microsomes revealed that alpha 1 subunits were expressed in all tissues while alpha 2 subunits were expressed in brain, heart, and lung. The alpha 3 subunit, a protein whose existence had been inferred from cDNA cloning, was expressed primarily in brain and copurified with ouabain-inhibitable Na,K-ATPase activity. An antiserum specific for the rat Na,K-ATPase beta subunit was generated from a TrpE-beta subunit fusion protein. Western blot analysis showed that beta subunits were present in kidney, brain, and heart. However, no beta subunits were detected in liver, lung, spleen, thymus, or lactating mammary gland. The distinct tissue distributions of alpha and beta subunits suggest that different members of the Na,K-ATPase family may have specialized functions.  相似文献   

4.
Cartilage matrix protein (CMP; also known as matrilin-1), one of the major noncollagenous proteins in most cartilages, binds to aggrecan and type II collagen. We examined the effect of CMP on the adhesion of chondrocytes and fibroblasts using CMP-coated dishes. The CMP coating at 10-20 micrograms/ml enhanced the adhesion and spreading of rabbit growth plate, resting and articular chondrocytes, and fibroblasts and human epiphyseal chondrocytes and MRC5 fibroblasts. The effect of CMP on the spreading of chondrocytes was synergistically increased by native, but not heated, type II collagen (gelatin). The monoclonal antibody to integrin alpha1 or beta1 abolished CMP-induced cell adhesion and spreading, whereas the antibody to integrin alpha2, alpha3, alpha5, beta2, alpha5beta1, or alphaVbeta5 had little effect on cell adhesion or spreading. The antibody to integrin alpha1, but not to other subunits, coprecipitated 125I-CMP that was added to MRC5 cell lysates, indicating the association of CMP with the integrin alpha1 subunit. Unlabeled CMP competed for the binding to integrin alpha1 with 125I-CMP. These findings suggest that CMP is a potent adhesion factor for chondrocytes, particularly in the presence of type II collagen, and that integrin alpha1beta1 is involved in CMP-mediated cell adhesion and spreading. Since CMP is expressed almost exclusively in cartilage, this adhesion factor, unlike fibronectin or laminin, may play a special role in the development and remodeling of cartilage.  相似文献   

5.
6.
We have previously identified and characterised the collagen type II-binding integrin subunit alpha10, which is a member of the beta1 family and is expressed by chondrocytes. In the present study, we examined the expression of the alpha10 integrin in various mouse tissues. Immunohistochemical analysis of alpha10 on cryosections from 3-day-old mice demonstrated that alpha10beta1 was present in the hyaline cartilage of joints, vertebral column, trachea and bronchi. In addition, alpha10 was found in the ossification groove of Ranvier, in the aortic and atrioventricular valves of the heart and in the fibrous tissue lining skeletal muscle and ligaments. Overall, the distribution was distinct from that of the collagen-binding integrins alpha1beta1 and alpha2beta1. We also found that alpha10beta1was the dominating collagen-binding integrin during cartilage development. Expression of alpha10 appeared at embryonic day 11.5 (E11.5) at the same time as chondrogenesis started as judged by collagen type II expression. At E13.5, alpha10 was present throughout the anlage as well as in the perichondrium and in mesenchyme just outside the perichondrium, where it localised with collagen type I. Four weeks after birth, alpha10 was prominent both at the articular surface and in the growth plate. In conclusion, we found that integrin alpha10beta1 was a major collagen-binding integrin during cartilage development and in mature hyaline cartilage. In addition, we found that alpha10beta1 was present in some fibrous tissues.  相似文献   

7.
8.
The predicted amino acid sequence of the alpha subunit of the rat liver mitochondrial ATP synthase has been obtained by sequencing a cDNA for the alpha subunit. Analysis of the sequence shows that it contains the A and B consensus sequences found in many nucleotide-binding proteins. Twelve amino acids of the rat liver alpha subunit differ from the sequence of the bovine heart alpha subunit; four of these involve differences in charge. The rat liver alpha subunit, from arginine 15 to the C-terminal proline 510, has been overexpressed in Escherichia coli using the alkaline phosphatase promoter (phoA) and leader peptide to direct the export of the expressed protein to the bacterial periplasm. By treating the cells with lysozyme, osmotic shock, and alkaline pH washes, the alpha subunit can be extracted in high yield (greater than 25 mg/liter) and in a high state of purity. The expressed alpha subunit remains soluble at pH 9.5 or greater and precipitates when treated with Mg2+ ions at low millimolar concentration. The bacterially expressed alpha subunit interacts with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), resulting in a marked fluorescence enhancement upon binding. An enhancement of fluorescence is also observed upon the interaction of the alpha subunit with TNP-ADP. Preincubating the alpha subunit with 1.5 mM ATP significantly reduces the fluorescence enhancement seen with TNP-ATP. The alpha subunit binds TNP-ATP with an apparent Kd in the low micromolar range (1-5 microM) and binds TNP-ADP with an affinity at least 10-fold lower. This work shows that the rat liver alpha subunit can be overexpressed in E. coli to yield a large amount of functional protein. With the acquisition of the overexpressed alpha subunit, it is now possible to test the reconstitution of ATPase activity from a mixture of recombinant and rat liver-derived subunits and to test the formation of complexes by the overexpressed alpha and beta subunits of the rat liver F1-ATPase.  相似文献   

9.
Rat potassium channel tetramerisation domain-containing 10 (KCTD10) gene was cloned and identified as a novel member of polymerase delta-interacting protein 1 (PDIP1) gene family. Rat KCTD10 is highly expressed in lung and moderately expressed in heart and testis. KCTD10 shares significant similarity in amino acid sequence to PDIP1 and can interact with the small subunit of DNA polymerase delta and PCNA as PDIP1 does. Like PDIP1, the expression of KCTD10 gene can be induced by TNF-alpha in NIH3T3 cells.  相似文献   

10.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

11.
We have positionally cloned and characterized a new calcium channel auxiliary subunit, alpha(2)delta-2 (CACNA2D2), which shares 56% amino acid identity with the known alpha(2)delta-1 subunit. The gene maps to the critical human tumor suppressor gene region in chromosome 3p21.3, showing very frequent allele loss and occasional homozygous deletions in lung, breast, and other cancers. The tissue distribution of alpha(2)delta-2 expression is different from alpha(2)delta-1, and alpha(2)delta-2 mRNA is most abundantly expressed in lung and testis and well expressed in brain, heart, and pancreas. In contrast, alpha(2)delta-1 is expressed predominantly in brain, heart, and skeletal muscle. When co-expressed (via cRNA injections) with alpha(1B) and beta(3) subunits in Xenopus oocytes, alpha(2)delta-2 increased peak size of the N-type Ca(2+) currents 9-fold, and when co-expressed with alpha(1C) or alpha(1G) subunits in Xenopus oocytes increased peak size of L-type channels 2-fold and T-type channels 1.8-fold, respectively. Anti-peptide antibodies detect the expression of a 129-kDa alpha(2)delta-2 polypeptide in some but not all lung tumor cells. We conclude that the alpha(2)delta-2 gene encodes a functional auxiliary subunit of voltage-gated Ca(2+) channels. Because of its chromosomal location and expression patterns, CACNA2D2 needs to be explored as a potential tumor suppressor gene linking Ca(2+) signaling and lung, breast, and other cancer pathogenesis. The homologous location on mouse chromosome 9 is also the site of the mouse neurologic mutant ducky (du), and thus, CACNA2D2 is also a candidate gene for this inherited idiopathic generalized epilepsy syndrome.  相似文献   

12.
13.
14.
In this study, we have examined the spatiotemporal distribution of the alpha 1 integrin subunit, a putative laminin and collagen receptor, in avian embryos, using immunofluorescence microscopy and immunoblotting techniques. We used an antibody raised against a gizzard 175 x 10(3) M(r) membrane protein which was described previously and which we found to be immunologically identical to the chicken alpha 1 integrin subunit. In adult avian tissues, alpha 1 integrin exhibited a very restricted pattern of expression; it was detected only in smooth muscle and in capillary endothelial cells. In the developing embryo, alpha 1 integrin subunit expression was discovered in addition to smooth muscle and capillary endothelial cells, transiently, in both central and peripheral nervous systems and in striated muscles, in association with laminin and collagen IV. alpha 1 integrin was practically absent from most epithelial tissues, including the liver, pancreas and kidney tubules, and was weakly expressed by tissues that were not associated with laminin and collagen IV. In the nervous system, alpha 1 integrin subunit expression occurred predominantly at the time of early neuronal differentiation. During skeletal muscle development, alpha 1 integrin was expressed on myogenic precursors, during myoblast migration, and in differentiating myotubes. alpha 1 integrin disappeared from skeletal muscle cells as they became contractile. In visceral and vascular smooth muscles, alpha 1 integrin appeared specifically during early smooth muscle cell differentiation and, later, was permanently expressed after cell maturation. These results indicate that (i) the expression pattern of alpha 1 integrin is consistent with a function as a laminin/collagen IV receptor; (ii) during avian development, expression of the alpha 1 integrin subunit is spatially and temporally regulated; (iii) during myogenesis and neurogenesis, expression of alpha 1 integrin is transient and correlates with cell migration and differentiation.  相似文献   

15.
Type X collagen, a homotrimer of alpha 1 (X) polypeptide chains, is specifically expressed by hypertrophic chondrocytes in regions of cartilage undergoing endochondral ossification. We have previously described the isolation of a small fragment of the human type X collagen gene (COL10A1) and its localization to the q21-q22 region of human chromosome 6 [Apte, S., Mattei, M.-G. & Olsen, B. R. (1991) FEBS Lett. 282, 393-396]. Using this fragment as a probe to screen genomic libraries, we report here the isolation of human and mouse genomic clones which contain the major part of the human and mouse type X collagen genes. In both species, the 14-kb genomic clones which were isolated contain a long open reading frame (greater than 2000 bp in length) which codes for the entire C-terminal non-collagenous (NC1) domain, the entire collagenous (COL) domain and part of the N-terminal non-collagenous (NC2) domain of the alpha 1(X) collagen chain. The human genomic clone contains the major part of the COL10A1 gene, in addition to the region we have previously cloned, and is highly similar to the corresponding portions of the mouse genomic clone (84.5% similarity at the nucleotide level, and 86.1% at the level of the conceptual translation product). The identification of the mouse genomic clone as the alpha 1(X) collagen gene (Col10a1) was confirmed by in situ hybridization of a fragment of the mouse genomic clone to sections from newborn mice. Hybridization was restricted to the hypertrophic chondrocytes of developing chondroepiphyses, being absent in small chondrocytes and in other tissues. Using interspecific backcross analysis, the locus for the mouse alpha 1 (X) collagen gene was assigned to chromosome 10. The cloning and chromosomal mapping of the human and mouse alpha 1 (X) collagen genes now permit the investigation of the possible role of type X collagen gene defects in the genesis of chondrodysplasias in both species and provide data essential for the generation of transgenic mice deficient in type X collagen.  相似文献   

16.
17.
Complimentary DNA clones encoding the alpha1C and beta2a subunits of guinea-pig cardiac L-type Ca2+ channels were isolated using the PCR method. The open reading frame encoded 2,169 amino acids for the alpha1C and 597 amino acids for the beta2a subunit. The proteins showed 94.2 and 94.8%, respectively, identity to the respective subunit of the rabbit protein. The message size of the guinea pig alpha1C and beta2a subunits was 8.0 and 3.5/4.0 kb, respectively. RT-PCR analysis revealed that the alpha1C subunit is expressed exclusively in the heart, while the beta2a subunit is expressed in the heart, cerebellum, whole brain, and stomach. The alpha1C and beta2a subunits are transiently expressed in BHK (baby hamster kidney) cells, and the channel currents were studied using the whole-cell patch clamp technique in medium containing 30 mM Ba2+. In cells expressing alpha1C alone, the Ba2+ current was activated at -30 mV and more positive potentials and peaked at about 10 mV. The co-expression of beta2a with alpha1C did not affect the voltage-dependence of the current, but increased the peak current and accelerated current decay. In cells transfected with guinea pig alpha1C and rabbit beta1+alpha2/delta, a Ba2+ current comparable to those in native myocytes was observed. The Ba2+ current can be blocked completely by nifedipine and is enhanced 3-fold by Bay K 8644. On the other hand, neither forskolin nor okadaic acid affects the Ba2+ current, suggesting that cAMP-mediated modulation is not easily reproduced in transfected cells, unlike that seen in native cardiac myocytes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号