首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted in turf maintained under golf course fairway conditions in May, June, and August 2009 and in August and September 2010 to evaluate the ability of entomopathogenic nematodes to control larval populations of the black cutworm, Agrotis ipsilon, on golf courses. Commercial products containing the entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, S. feltiae, and S. riobrave were applied at 1.0 or 2.5×109 infective juveniles per ha against fourth-instar black cutworms. Larval mortality and turf damage were evaluated at 4 and/or 7 days after treatment (DAT). Steinernema carpocapsae was the best performing species due to a combination of high control rates (average 83%), most consistent results (70–90% range), high speed of kill (average 68% at 4 DAT), and prevention of significant turf damage despite very high larval densities at 0 DAT. Efficacy of S. feltiae and H. bacteriophora was often similar to that of S. carpocapsae but overall less consistent. Short-term persistence of the nematodes was evaluated in four turfgrass sites maintained under golf course putting green, fairway, or rough conditions in June and August 2009 by baiting soil samples at 0, 4, 7, and 14 DAT. Relative to recovery immediately after application, at least 50% of S. feltiae and 25% of S. carpocapsae consistently persisted up to 4 days in one of the greens and up to 7 days in some trials. Our finding suggests that S. carpocapsae and S. feltiae may provide adequate black cutworm control in golf course turf under moderate summer temperatures.  相似文献   

2.
The symbiotic relationships between Neotyphodium endophytes (Clavicipitacea) and certain cool‐season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue, Festuca arundinacea Schreb, and perennial ryegrass, Lolium perenne L. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte‐infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four‐alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three‐alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant‐ and endophyte‐related alkaloids.  相似文献   

3.
A non-native invasive sawfly, the amber-marked birch leaf miner Profenusa thomsoni (Konow), was first detected in south-central Alaska in 1996 and is now widely distributed throughout urban and wild birch trees in Alaska. Impacts have been considered primarily aesthetic because leaf miners cause leaves of birch trees (Betula spp.) to senesce prematurely, but the leaf miners likely also reduce birch vigour and thereby increase susceptibility to diseases and other insects. We tested the ability of commercially available biological control agents to control P. thomsoni. The entomopathogenic fungus Beauveria bassiana (Bals.-Criv.) Vuillemin GHA strain and the entomopathogenic nematode Steinernema carpocapsae (Weiser) were applied in aqueous suspension to the soil/litter surface beneath infested birch trees in Alaska at one site in 2007 and 2008 and two sites in 2010. There was no evidence the fungus or nematode controlled P. thomsoni. Instead, there was evidence the fungus increased the density of this pest insect at two sites, likely by reducing its predators. As tested, B. bassiana and S. carpocapsae do not appear effective as biological controls of P. thomsoni.  相似文献   

4.
Abstract.  1. The fungus Neotyphodium lolii forms a symbiotic relationship with its grass host Lolium perenne (perennial ryegrass). The fungus benefits from access to plant nutrients and photosynthate, whereas the plant benefits from acquired chemical defence against herbivory.
2. This study examined the potential for endophyte-mediated plant defences to influence interactions between fall armyworm Spodoptera frugiperda , and the entomopathogenic nematode Steinernema carpocapsae and clarified biological mechanisms underlying the observations made.
3. In laboratory and greenhouse experiments, S. frugiperda larvae were fed endophytic or non-endophytic L. perenne then exposed to S. carpocapsae or injected with the nematodes' symbiotic bacteria Xenorhabdus nematophila .
4. In all instances, S. frugiperda larvae fed endophyte-infected grass suffered significantly lower mortality than those fed non-endophytic plants. Although larvae fed endophyte-infected grass often had significantly lower biomass than those fed uninfected grass, these differences did not account for altered susceptibility to S. carpocapsae .
5. Endophyte-mediated reductions in herbivore susceptibility to the nematode pathogen represent a herbivore adaptation that effectively turns the tables on both plant and natural enemy by reducing the virulence of the nematodes' symbiotic bacteria while expanding the temporal window of herbivory.  相似文献   

5.
Single, double and triple releases of the entomopathogenic nematode Heterorhabditis bacteriophora Poinar, reduced the population of the beetle Maladera matrida Argaman, infesting peanuts (’Shulamit’ cv.) by 70, 75 and 93% respectively in microplot tests. Simultaneous and late (2 weeks after infestation) applications reduced beetle numbers by 63 and 79% respectively, in the microplots, while early application (2 weeks prior to infestation) did not reduce the beetle population. In a field trial, reductions in insect population and damage to the crop were achieved by early treatment with the nematode as well as by Heptachlor, leading to reductions in the insect population of 60 and 90% respectively, when recorded 4 weeks after nematode application. However, the nematode treatment did not maintain its effectiveness for a longer period and pest damage increased to the same level as the untreated control after 7 weeks. When the nematodes were applied at different concentrations (0.25–1.0 x 106 infective juveniles (IJs) m‐2) their effectiveness was not related to the concentration level. The only significant (P < 0.05) reduction in insect levels was recorded in the treatment with 0.5 X 106 IJs m‐2. In a second field trial, both H. bacteriophora and Steinernema glaseri reduced insect populations significantly (P < 0.05) by approximately 50% in comparison to the control. In the third trial, treatment with H. bacteriophora resulted in a decrease in insect population of 90% while treatment with S. carpocapsae reduced the grub numbers by 40% in comparison to the control. A differential susceptibility of various grub developmental stages was recorded in the field. The small grubs (I‐4 mm long, lst‐2nd larval stage) were not affected by the nematode treatments while the numbers of medium and large size grubs were reduced by 2‐ and 3‐fold respectively in the various tests. Nematodes were recovered by ‘nematode traps’ containing Galleria mellonella larvae from treated field plots 78 days after application. The implications of the results from the present studies on the use of entomopathogenic nematodes are discussed in relation to the development of an integrated pest management programme.  相似文献   

6.
We examined the attachment and infectivity of two entomopathogenic nematode species, Steinernema carpocapsae and Heterorhabditis indica, on soldiers and workers in two subterranean termite species, Coptotermes formosanus and C. vastator. In attachment tests with S. carpocapsae, more nematodes attached to soldiers of C. formosanus and C. vastator in the absence of workers compared to soldiers that were in the presence of workers. In tests with soldiers alone, workers alone, and mixture of equal numbers of workers and soldiers, soldiers in the mixed groups had lower mortality than soldiers alone after 1 and 4 days for both termite species. Exposure of small groups of either termite species to S. carpocapsae resulted in higher mortality of soldiers after 1 and 4 days post exposure. Mortality in soldiers alone exposed to H. indica was not significant compared to mortality in mixed groups at 1 day exposure, but was significant after 4 days. In concentration-mortality tests, a significant two-way interaction existed between nematode concentration and termite caste for C. formosanus exposed to S. carpocapsae for 1 and 4 days. A significant effect of nematode concentration was found for C. vastator exposed to H. indica for 1 day. This termite species had lower mortality when exposed to H. indica after 1 and 4 days compared to C. formosanus. At 4 days post exposure to H. indica, the effects of nematode concentration and termite caste were significant. Steinernema carpocapsae caused higher mortality than H. indica, but mortality of workers was higher when exposed to H. indica. Soldiers of both species experienced rapid mortality when exposed to S. carpocapsae, whereas soldiers of C. vastator experienced lower mortality when exposed to H. indica. Thus, our results show that when soldiers alone or workers alone are exposed to the nematodes, there is a differential susceptibility of soldiers and workers to nematode infection with soldiers being more susceptible than workers. In a mixed group of soldiers and workers or workers alone, it appears that grooming behavior of the workers serves as a mechanism to reduce nematode infection of soldiers and workers. The reason for this differential response to nematode infection is that soldiers do not exhibit grooming behavior.  相似文献   

7.
The main objective of this study was to assess the susceptibility of the black cutworm (Agrotis ipsilon) to the biopesticide spinosad and to a commercial formulation (GHA strain) of the entomopathogenic fungus, Beauveria bassiana. Secondly, we quantified the effects of sublethal doses of spinosad on a number of A. ipsilon fitness parameters, and interactions resulting from simultaneous applications of sub-lethal doses of spinosad and B. bassiana. Under laboratory conditions, A. ipsilon third instar larvae were highly susceptible to spinosad, with an estimated LC50 of 50 ppm. The entomopathogenic fungus, B. bassiana had a lower efficacy with an estimated LC50 of 7×107 spores mL?1. Topical applications of 5, 7.5 and 10 ppm of spinosad on third instar larvae reduced larval size and increased time to pupation and to emergence. However, pupal and adult weights were not significantly different between treated and control individuals. Additivity was observed from most spinosad–B. bassiana combinations tested, thus indicating compatibility between products. We concluded that spinosad is a promising tool for controlling black cutworm larvae alone or in combination with other products.  相似文献   

8.
小地老虎Agrotis ipsilon是烟草Nicotiana tabacum移栽期主要的切根害虫,严重危害烟草生产。为研判烟草生产中符合双减(减肥、减药)要求的生物和生态防控技术,集成适合推广的虫害综合治理模式,本研究在云南玉溪华宁县以昆虫病原线虫(EPN)Steinernema carpocapsae All粉剂和化学药剂敌杀死(溴氰菊酯)处理,配合2种幼虫食诱方法(传统引诱剂、人工引诱剂)以及2种增效助剂(激健1、2)组合,调查移栽后烟草幼苗受小地老虎危害死亡率,评价生物药剂、食诱剂和助剂对烟草幼苗的保护效果。结果表明,无论是否存在食诱剂,移栽4 d各施药处理均能显著降低烟草幼苗死亡率,随时间的推移,所有处理的烟草幼苗死亡率均显著上升;无食诱剂情况下,EPN+激健1和敌杀死于移栽7 d仍具显著保苗效果;传统的糖醋酒液食诱法本身具备一定保苗效果,配合施药,初期效果最好,4 d时,烟草幼苗危害率最低达0.83%±0.008%(传统食诱剂+昆虫病原线虫);人工食诱剂持效性最好,移栽10 d时配合EPN、EPN+激健2和敌杀死仍具明显保苗效果。施用化学药剂时,食诱剂本身对保苗效果无显著贡献;使用EPN时,传统食诱法较空白具有显著保苗效果,但与人工食诱法间差异不显著。移栽4 d时,EPN+激健1较单独施放EPN具显著保苗效果,之后调查中添加助剂小区与EPN小区无显著差异。综上所述,EPN粉剂配合人工食诱剂和激健助剂,可长期较好地抑制小地老虎对烟草幼苗危害,为集成烟草全程绿色生态治理模式提供了有效参考。  相似文献   

9.
Parasites and pathogens can follow different patterns of infection depending on the host developmental stage or sex. In fact, immune function is energetically costly for hosts and trade‐offs exist between immune defenses and life history traits as growth, development and reproduction and organisms should thus optimize immune defense through their life cycle according to their developmental stage. Identifying the most susceptible target and the most virulent pathogen is particularly important in the case of insect pests, in order to develop effective control strategies targeting the most vulnerable individuals with the most effective control agent. Here, we carried out laboratory tests to identify the most susceptible target of infection by infecting different stages of the red palm weevil Rhynchophorus ferrugineus (larvae, pupae, male, and female adults) with both a generic pathogen, antibiotic‐resistant Gram‐negative bacteria Escherichia coli XL1‐Blue, and two specific strains of entomopathogenic nematodes (EPNs), Steinernema carpocapsae ItS‐CAO1 and Heterorhabditis bacteriophora ItH‐LU1. By evaluating bacterial clearance, host mortality and parasite progeny release, we demonstrate that larvae are more resistant than adults to bacterial challenge and they release less EPNs progeny after infection despite a higher mortality compared to adults. Considering the two EPN strains, S. carpocapsae was more virulent than H. bacteriophora both in terms of host mortality and more abundant progeny released by hosts after death. The outcomes attained with unspecific and specific pathogens provide useful information for a more efficient and sustainable management of this invasive pest.  相似文献   

10.
Entomopathogenic nematodes (Rhabdita: Heterorhabditidae and Steinernematidae) have been effective as inundative biological control agents of scarab larvae (Coleoptera: Scarabaeidae) in turfgrass. Entomopathogenic nematodes also occur naturally in turfgrass and endemic or inoculated populations may be able to provide effective long-term control. Variation in Heterorhabditis bacteriophora and Steinernema carpocapsae spatial and temporal distribution along transects placed at different turfgrass sites in central New Jersey, USA, was investigated. H. bacteriophora tended to be recovered from fewer sections in a transect than S. carpocapsae, but the two species, overall, did not differ in patchiness of distribution. In one transect with a H. bacteriophora population S. feltiae was also recovered, but the two populations seldom overlapped spatially. In transects with adequate scarab larvae density for analysis, H. bacteriophora density and Popillia japonica larvae density were inversely correlated. This suggests that endemic H. bacteriophora populations may suppress P. japonica populations. In one transect, an epizootic of H. bacteriophora in an undetermined host may have occurred. Edaphic factors were relatively uniform along transects and were, at most, weakly correlated with nematode recovery. Uniform inoculative releases of H. bacteriophora tended to return to patterns of distribution typical of endemic populations.  相似文献   

11.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say is the most destructive insect pest of potato in many areas of the world. Little is known about the haemocyte types of the CPB and its plasma phenoloxidase (PO). In this regard, we investigated the haemocyte profile and PO of CPB and its immune response to the entomopathogenic nematode, Steinernema carpocapsae. Five types of haemocytes, the plasmatocytes (~67.4%), granulocytes (~23.5%), oenocytoids (~2.4%), spherulocytes (~0.25%) and prohaemocytes (~6.5%) were identified in fourth instar CPB larvae. Total haemocyte counts (THCs) were significantly reduced in nematode-injected insects compared with control groups (P < 0.05). Nematode cellular encapsulation observed in haemolymph of nematode-injected insects may partially explain decreased THCs. Plasma PO assay showed increased PO activity in nematode-injected insects compared with control groups (P < 0.05). Plasma PO assay on native polyacrylamide gel electrophoresis (PAGE) assay with L-3, 4-dihydroxyphenylalanine as substrate showed five bands (with molecular weights of approximately 200, 118, 68.5, 62.5 and 58.75 kDa).  相似文献   

12.
The specific oxygen uptake rate (qO2) of stages of the entomopathogenic nematode (EPN) Steinernema carpocapsae CABA01 in liquid culture was measured. Nematodes were grown into previously pasteurised culture broths of their symbiotic bacterium, Xenorhabdus nematophila, in orbitally agitated flask cultures (VL = 125 mL) at N = 150 rpm and T = 25°C. The basal medium contained 3% (w/v) soy trypticase broth and 0.5% (w/v) yeast extract. The EPNs developed from the egg stage to the adult stage exhibiting qO2 values of 1.92, 5.48, 0.48, 0.28 and 0.0014 [10?1 mmolO2/(gnematode-wet base h)] for the egg-Juvenile 1 (J1), J2, J3, J4 and the adult stages, respectively.  相似文献   

13.
Neotyphodium and Epichloë species (Ascomycota: Clavicipitaceae) are fungal symbionts (endophytes) of grasses. Many of these endophytes produce alkaloids that enhance their hosts’ resistance to insects or are toxic to grazing mammals. The goals of eliminating from forage grasses factors such as ergot alkaloids that are responsible for livestock disorders, while retaining pasture sustainability, and of developing resistant turf grasses, require better understanding of how particular alkaloids affect insect herbivores. We used perennial ryegrass Lolium perenne L. (Poaceae) symbiotic with Neotyphodium lolii × Epichloë typhina isolate Lp1 (a natural interspecific hybrid), as well as with genetically modified strains of Lp1 with altered ergot alkaloid profiles, to test effects of ergot alkaloids on feeding, growth, and survival of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), a generalist grass‐feeding caterpillar. Neonates or late instars were provided clippings from glasshouse‐grown plants in choice and rearing trials. Wild‐type endophytic grass showed strong antixenosis and antibiosis, especially to neonates. Plant‐endophyte symbiota from which complex ergot alkaloids (ergovaline and lysergic acid amides such as ergine) or all ergot alkaloids were eliminated by endophyte gene knockout retained significant resistance against neonates. However, this activity was reduced compared to that of wild‐type Lp1, providing the first direct genetic evidence that ergot alkaloids contribute to insect resistance of endophytic grasses. Similarity of larval response to the two mutants suggested that ergovaline and/or ergine account for the somewhat greater potency of wild‐type Lp1 compared to the knockouts, whereas simpler ergot alkaloids contribute little to that added resistance. All of the endophyte strains also produced peramine, which was probably their primary resistance component. This study suggests that ergot alkaloids can be eliminated from an endophyte of perennial ryegrass while retaining significant insect resistance.  相似文献   

14.
Trials conducted under glasshouse conditions showed that control of Otiorhynchus sulcatus larvae in strawberry plants can be effective using Steinernema carpocapsae and Heterorhabditis megidis, given that temperature and moisture extremes are avoided. In field experiments, the double line T-Tape® drip irrigation system performed better than the single line T-Tape® system, effectively distributing the nematodes along and across strawberry raised beds, and placing them close to the root zone where O. sulcatus larvae feed. As soil temperatures are satisfactory for nematode infectivity from late spring to early autumn, nematode applications were aimed at late instar larvae during spring, and early instar larvae during summer. Late summer field treatment with S. carpocapsae induced 49.5% reduction of the early instar larvae, and field application of the same nematode species in late spring resulted in 65% control of late instar larvae. In the same trial, spring application of H. megidis caused 26% mortality of late instar larvae of O. sulcatus.  相似文献   

15.
Shelf life of biological control products based on the entomopathogenic nematode Steinernema feltiae is rather limited. In order to prolong shelf life, the metabolism of nematodes during storage must be reduced, either by low temperature or by means of desiccation of the third stage dauer juveniles (DJs). Tolerance to desiccation is limited in S. feltiae. Their tolerance can be increased by an adaptation to moderate desiccation conditions. The objective of this study was to screen for tolerant strains among wild type populations of S. feltiae, hybridise most tolerant strains and further improve desiccation tolerance by subjection of the hybrid strain to genetic selection. Dehydrating conditions, measured as water activity (a w-values), were produced by treating DJs with different concentrations of the polymer polyethylene glycol 600. Significant variation was recorded among 24 S. feltiae strains. The mean tolerated water activity survived by 50% of the population (WA50) ranged from 0.78 to 0.93 when nematodes were not adapted to desiccation stress and from 0.66 to 0.88 when preadapted to desiccation stress. The six most desiccation tolerant strains of non-adapted and adapted nematode populations were crossed. Preadapted tolerance of hybrids was superior to the tolerance of parental strains, whereas non-adapted tolerance was not increased. The most tolerant hybrid had a WA50 when preadapted of 0.67 and 0.86 when not adapted. The tolerance was lost after few reproductive cycles in the insect Galleria mellonella but was recovered again after six selection cycles with exposure to increasing stress conditions. Virulence and reproduction potential was not negatively affected by the selection. Stabilisation of the selection progress will be a major challenge to enable commercial exploitation of the genetic improvement.  相似文献   

16.
Biological control of the soil-inhabitating larvae (cutworms) of Agrotis segetum Schiff. using the entomogenous nematode Neoaplectana bibionis Bovien was investigated under field conditions. Cutworms were introduced to plots planted with lettuce, Lactuca sativa L. After planting and infection with cutworms the plots were treated with either N. bibionis, the insecticide endosulfan or water. The trials were sited on locations with loamy and sandy soil. Adequate control of cutworms was obtained using 2.5×105 nematodes/m2 on sandy soil and 1×106 nematodes/m2 on loamy soil. Effects of these treatments with nematodes were equal to the effect of endosulfan.
Neoaplectana bibionis ein entomophager nematode zur biologischen bekämpfung von Agrotis segetum an salat
Zusammenfassung Unter Freilandbedingungen wurde die biologische Bekämpfung von Erdraupen (Agrotis segetum Schiff., Lepidoptera, Noctuidae) mit dem entomophagen Nematoden Neoaplectana bibionis Bovien geprüft. Mit Salat bepflanzte Parzellen wurden mit Erdraupen besetzt. Anschliessend wurde auf die Parzellen N. bibionis, das Insektizid Endosulfan oder Wasser ausgebracht. Die Versuche wurden in Gebieten mit lehmigen und sandigen Böden durchgeführt. Für eine ausreichende Bekämpfung der Erdraupen waren auf dem sandigen Boden 2.5×105 Nematoden/m2 und auf dem lehmigen Boden 1×106 Nematoden/m2 erforderlich. Die Wirkung dieser Behandlungen entsprach der mit Endosulfan.
  相似文献   

17.
In vitro studies were carried out on the diamondback moth, Plutella xylostella larvae using an insect entomopathogenic nematode isolate, Steinernema carpocapsae obtained from the Koppert company, the Netherlands. Larvae of P. xylostella were collected from cabbage farms around Mashhad city of Iran. During the study, the responses of larvae at 25?°C for three periods of 24, 48 and 72?h with different concentrations of 0, 5, 10, 20, 40, 80, 160 and 320 third instar larvae of nematode (infective stage?=?IJs) per insect into 10?cm Petri dishes containing filter paper soaked with 1?ml of nematodes suspension were compared. Maximum mortality caused by S. carpocapsae nematode was 88% at 24?h, and it was 100% at 48 and 72 h. With increasing nematode population level and exposure time (ET in hour), mortality of P. xylostella larvae was increased. Based on probit analysis, LC50 values of S. carpocapsae nematode in three test periods were 45.61, 12.02 and 40.80 IJs per insect, respectively. Initial ANOVA was performed for S. carpocapsae nematode. The effect of both nematode population levels (IJ) and ET on third instar larvae of the diamondback moth, P. xylostella and interaction between IJ and ET were significant. In general, it is recommended to apply this nematode in suitable condition for controlling diamondback moth.  相似文献   

18.
Cold sensitivity of entomopathogenic nematodes severely restricts their biological control potential in some environments. We selected the SN strain of Steinernema feltiae together with its bacterial symbiont, Xenorhabdus bovenii, for improved cold tolerance by repeated passage through the wax moth Galleria mellonella larvae at 15°C. Nematode virulence (total insect mortality and speed of kill) and establishment (initiation of nematode development following penetration) were evaluated after six (= 12–24 generations) and 12 passages (= 24–36 generations). Cold selection enhanced nematode virulence at the cooler temperatures. Virulence measured as total insect-mortality at 8°C improved by 5.3- and 6.6-fold after six and 12 passages, respectively. Only small improvements (1.2–1.5-fold) were observed in speed of kill. Nematode establishment improved at all temperatures after 12 passages; the highest increase of 9-fold was observed at 8°C. Our results lend support to the hypotheses that functional traits along a continuously distributed environmental variable are genetically correlated and that the area under the fitness function is not always constant. Trade-offs in percentage mortality and speed of kill by the selected nematodes were observed at the warmer extreme after six passages of selection only. The implications of rapid changes in thermal sensitivity for economic mass-production of nematodes are discussed.  相似文献   

19.
The effects of the mixed biocide Bacillus thuringiensis Berliner with abamectin (BtA) on the development of the parasitoid Microplitis mediator (Haliday) (Hymenoptera: Braconidae) and its cotton bollworm host, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), were evaluated in the laboratory. Weight gain in larvae of H. armigera was initially delayed, but larval developmental period increased and pupal weight increased when they were fed on a diet containing BtA. Due to increased longevity of the host larvae, the susceptible period to parasitization of H. armigera by M. mediator increased when the host larvae were reared on diets containing BtA at concentrations of 0.5, 1, 2, and 4 μg g?1. The longevity of female and male parasitoids significantly decreased when newly emerged wasps were fed a honey solution containing 200 μg ml?1 BtA in comparison with those fed only a honey solution. Mean longevity was significantly prolonged when parasitoids were fed a honey solution and BtA–honey solution in comparison with those fed BtA–distilled water, distilled water, or nothing. There were no significant differences compared with the control in any biological characteristics for the offspring of female parasitoids fed the honey solutions containing BtA at concentrations of 50, 100, and 200 μg ml?1; characteristics measured include the egg‐larval period, pupal weight, male and female pupal periods, adult fresh weight, and adult longevity. When female parasitoids parasitized host larvae that had been fed the diet containing BtA, their male and female pupal periods were significantly prolonged compared with the control (without BtA).  相似文献   

20.
Entomopathogenic nematodes (EPNs) can kill and regulate populations of soil‐inhabiting insects, but studies evaluating these interactions in native ecosystems are rare. The objective of this study was to examine the effects of EPNs on a non‐agricultural caterpillar, Platyprepia virginalis (Boisduval) (Lepidoptera: Arctiidae), under natural conditions. Platyprepia virginalis caterpillars live in litter on the soil surface feeding beneath bush lupine during summer, autumn, and winter. Initial laboratory assays revealed that the caterpillars were vulnerable to at least two species of EPNs with which they co‐occur in the coastal prairie in northern California (USA). In contrast to laboratory assays, caterpillars survived exposure to prairie soil containing EPNs under natural conditions in field assays. To better understand the divergence between laboratory and field results for this native caterpillar, we used sentinel insects [Galleria mellonella L. (Lepidoptera: Pyralidae)] to identify particular locations where EPNs were present in the field. Platyprepia virginalis caterpillars were caged at these sites but again showed no evidence of susceptibility to EPNs. Platyprepia virginalis caterpillars reduce their exposure to EPNs by spending their time in and above the litter rather than contacting the soil when given the choice in nature. We conclude that P. virginalis is unlikely to serve as a reservoir for EPNs and that nematodes are unlikely to be important mortality factors for P. virginalis in this natural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号