首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Trifluoromethyl-2'-deoxyuridine (CF3dUrd) is incorporated into the DNA of mammalian cells in culture. We have synthesized oligonucleotides that allows site specific introduction of CF3dUrd residue into synthetic DNA oligonucleotide. We described here the utilization of these oligonucleotides as template for in vitro DNA synthesis. When CF3dUrd residue located at an internucleotide site in the template, the chain elongation was partially arrested one nucleotide after or before the CF3dUrd residue of template using Escherichia coli polymerase I (Klenow fragment) or human polymerase alpha (pol alpha). These results suggested that a mechanism of antitumor activity of CF3dUrd is inhibition of DNA replication.  相似文献   

2.
We studied recognition and binding of synthetic template-primers by Drosophila DNA polymerase alpha (pol alpha) holoenzyme. The template-primers used contained either mismatched base pairs at various positions in the primer region or exocyclic propanodeoxyguanosine (PdG) adducts at various positions in both template and primer.pol alpha requires primer-terminal complementarity of greater than or equal to 4 base pairs for efficient binding and incorporation. When a mismatched base pair is at the -4 position relative to the 3'-primer terminus, minimal but detectable binding occurs. This is consistent with the ability of pol alpha to incorporate a single nucleotide on a template-primer containing a mismatch at this position, but at a rate of only 7% relative to incorporation on a perfectly matched template-primer. No binding or incorporation (less than 1% of incorporation on a perfectly matched template-primer) was evident when a mismatched base pair was at the -3 position or closer, relative to the 3'-primer terminus. Similar results were obtained when PdG was placed at various positions in the primer region. When a PdG residue was located in the template region (+ 3 position relative to the 3'-primer terminus), single-nucleotide incorporation was stimulated 3-4-fold. These observations suggest that there are intrinsic aspects to the mechanism of nucleotide incorporation by pol alpha which ensure the fidelity of DNA synthesis by this enzyme and may provide novel insights into the fundamental mechanism of polymerase translocation along templates.  相似文献   

3.
Gly-952 is a conserved residue in Saccharomyces cerevisiae DNA polymerase alpha (pol alpha) that is strictly required for catalytic activity and for genetic complementation of a pol alpha-deficient yeast strain. This study analyzes the role of Gly-952 by characterizing the biochemical properties of Gly-952 mutants. Analysis of the nucleotide incorporation specificity of pol alpha G952A showed that this mutant incorporates nucleotides with extraordinarily low fidelity. In a steady-state kinetic assay to measure nucleotide misincorporation, pol alpha G952A incorporated incorrect nucleotides more efficiently than correct nucleotides opposite template C, G, and T. The fidelity of the G952A mutant polymerase was highest at template A, where the ratio of incorporation of dCMP to dTMP was as high as 0.37. Correct nucleotide insertion was 500- to 3500-fold lower for G952A than for wild type pol alpha, with up to 22-fold increase in pyrimidine misincorporation. The Km for G952A pol alpha bound to mismatched termini T:T, T:C, C:A, and A:C was 71- to 460-fold lower than to a matched terminus. Furthermore, pol alpha G952A preferentially incorporated pyrimidine instead of dAMP opposite an abasic site, cis-syn cyclobutane di-thymine, or (6-4) di-thymine photoproduct. These data demonstrate that Gly-952 is a critical residue for catalytic efficiency and error prevention in S. cerevisiae pol alpha.  相似文献   

4.
Cyclopurine deoxynucleosides are common DNA lesions generated by exposure to reactive oxygen species under hypoxic conditions. The S and R diastereoisomers of cyclodeoxyadenosine on DNA were investigated separately for their ability to block 3' to 5' exonucleases. The mammalian DNA-editing enzyme DNase III (TREX1) was blocked by both diastereoisomers, whereas only the S diastereoisomer was highly efficient in preventing digestion by the exonuclease function of T4 DNA polymerase. Digestion in both cases was frequently blocked one residue before the modified base. Oligodeoxyribonucleotides containing a cyclodeoxyadenosine residue were further employed as templates for synthesis by human DNA polymerase eta (pol eta). pol eta could catalyze translesion synthesis on the R diastereoisomer of cyclodeoxyadenosine. On the S diastereoisomer, pol eta could catalyze the incorporation of one nucleotide opposite the lesion but could not continue elongation. Although pol eta preferentially incorporated dAMP opposite the R diastereoisomer, elongation continued only when dTMP was incorporated, suggesting bypass of this lesion by pol eta with reasonable fidelity. With the S diastereoisomer, pol eta mainly incorporated dAMP or dTMP opposite the lesion but could not elongate even after incorporating a correct nucleotide. These data suggest that the S diastereoisomer may be a more cytotoxic DNA lesion than the R diastereoisomer.  相似文献   

5.
DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase delta as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, we describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, alpha or delta. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase alpha several hundred times more strongly than it inhibits DNA polymerase delta. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase delta. It appears that repair synthesis at late times after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase delta.  相似文献   

6.
NRTI-based therapy used to treat AIDS can cause mitochondrial toxicity resulting from the incorporation of NRTIs into mitochondrial DNA by DNA polymerase gamma (pol gamma). Pol gamma has poor discrimination against many of the currently used NRTIs resulting in aborted DNA synthesis and subsequent depletion of mtDNA. Pol gamma readily incorporates ddCTP, ddITP and D4T-TP with an efficiency similar to the incorporation of normal nucleotides, whereas AZT-TP, CBV-TP, 3TC-TP and PMPApp act as moderate inhibitors to DNA synthesis. We have sought a structural explanation for the unique selection for NRTIs by the human pol gamma. A structural model of the human pol gamma was developed to ascertain the role of active site amino acids. One residue in particular, Y951 in motif B, is primarily responsible for the selection of dideoxynucleotides and D4T-TP. Our structural model of the human pol gamma should assist in rational design of antiviral nucleoside analogs with higher specificity for HIV-RT and minimal selection and incorporation into mitochondrial DNA.  相似文献   

7.
The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage.  相似文献   

8.
DNA polymerase lambda contains template-dependent (DNA polymerase) and template-independent (terminal transferase) activities. In this study we enzymologically characterized the terminal transferase activity of polymerase lambda (pol lambda-tdt). Pol lambda-tdt activity was strongly influenced by the nature of the 3'-terminal sequence of the DNA substrate, and it required a single-stranded (ss) DNA 3'-overhang of about 9-12 nucleotides for optimal activity. The strong preference observed for pyrimidine versus purine nucleotide incorporation was found to be due, at least partially, to a steric block imposed by the residue Tyr-505 in the active site of pol lambda. Pol lambda-tdt was found to be able to elongate a 3'-ssDNA end by two alternative mechanisms: first, a template-independent one resulting in addition of 1 or 2 nucleotides, and second, a template-dependent one where a homopolymeric tract as short as 3 nucleotides at the 3'-end could be used as a template to direct DNA polymerization by a looping back mechanism. Furthermore repetitive cycles of DNA synthesis resulted in the expansion of such a short homopolymeric terminal sequence. Most importantly we found that the proliferating cell nuclear antigen was able to selectively block the looping back mechanism while stimulating the single terminal nucleotide addition. Finally replication protein A completely suppressed the transferase activity of pol lambda while stimulating the polymerase activity, suggesting that proliferating cell nuclear antigen and replication protein A can coordinate the polymerase and the terminal transferase activities of pol lambda.  相似文献   

9.
Activity of thymidylate synthase was measured in situ in leukemia cells by tritium release from [5-3H]dUrd. Aphidicolin, an inhibitor of DNA polymerase alpha, but not thymidylate synthase, caused a time dependent inhibition of the enzyme when added to the cells after [5-3H]dUrd. Cells treated with hydroxyurea and aphidicolin in sequence before addition of [5-3H]dUrd had a high initial thymidylate synthase activity that decreased with time. This pattern indicates that thymidylate synthase activity is linked to DNA synthesis; however, its inhibition by drugs that inhibit DNA synthesis may be due to accumulation of thymidine nucleotide(s), rather than to an allosteric interaction in the replitase complex.  相似文献   

10.
Inhibition of DNA primase and polymerase alpha from calf thymus was examined. DNA primase requires a 3'-hydroxyl on the incoming NTP in order to polymerize it, while the 2'-hydroxyl is advantageous, but not essential. Amazingly, primase prefers to polymerize araATP rather than ATP by 4-fold (kcat/KM). However, after incorporation of an araNMP into the growing primer, further synthesis is abolished. The 2'- and 3'-hydroxyls of the incoming nucleotide appear relatively unimportant for nucleotide binding to primase. Polymerization of nucleoside triphosphates by DNA polymerase alpha onto a DNA primer was similarly analyzed. Removing the 3'-hydroxyl of the incoming triphosphate decreases the polymerization rate greater than 1000-fold (kcat/KM), while a 2'-hydroxyl in the ribo configuration abolishes polymerization. If the 2'-hydroxyl is in the ara configuration, there is almost no effect on polymerization. An araCMP or ddCMP at the 3'-terminus of a DNA primer slightly decreased DNA binding as well as binding of the next correct 2'-dNTP. Changing the primer from DNA to RNA dramatically and unpredictably altered the interactions of pol alpha with araNTPs and ddNTPs. Compared to the identical DNA primer, pol alpha discriminated 4-fold better against araCTP polymerization when the primer was RNA, but 85-fold worse against ddCTP polymerization. Additionally, pol alpha elongated RNA primers containing 3'-terminal araNMPs more efficiently than the identical DNA substrate.  相似文献   

11.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

12.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

13.
Human DNA polymerase alpha holoenzyme follows an ordered sequential terreactant mechanism of substrate recognition and binding (Wong, S. W., Paborsky, L. R., Fisher, P. A., Wang, T. S.-F., and Korn, D. (1986) J. Biol. Chem. 261, 7958-7968). We confirmed this mechanism for the DNA polymerase alpha holoenzyme purified from Drosophila melanogaster embryos and studied the interaction of Drosophila pol alpha with synthetic oligonucleotide template-primers containing modified tetrahydrofuran moieties as model abasic lesions chemically engineered at a number of defined sites. Abasic lesions in the template had relatively little effect on the polymerase incorporation reaction at sites proximal to the lesion. However, incorporation opposite an abasic site was undetectable relative to that which occurred opposite a normal template nucleotide. Moreover, abasic residues in the primer region of the template-primer construct as far as 4 base pairs removed from the 3'-primer terminus prevented detectable nucleotide incorporation relative to that seen on an unmodified template-primer. Primer-region lesions had qualitatively similar effects whether they were located on the primer strand itself or on the complementary template strand. Data from polymerase incorporation experiments were corroborated by competitive binding assays performed under steady state reaction conditions. Results of these experiments suggested that polymerase binding to synthetic oligonucleotide template-primers was essentially unaffected by lesions located at sites that did not block incorporation. Lesions that did block incorporation apparently did so by abrogating template-primer binding. These observations have implications for understanding the mechanisms whereby DNA polymerase alpha recognizes noninformational template sites in vivo and prevents DNA synthesis from proceeding past these points.  相似文献   

14.
DNA polymerase β (pol β) is responsible for gap filling synthesis during repair of damaged DNA as part of the base excision repair pathway. Human pol β mutations were recently identified in a high percentage (∼30%) of tumors. Characterization of specific cancer variants is particularly useful to further the understanding of the general mechanism of pol β while providing context to disease contribution. We showed that expression of the carcinoma variant E295K induces cellular transformation. The poor polymerase activity exhibited by the variant was hypothesized to be caused by the destabilization of proper active site assembly by the glutamate to lysine mutation. Here, we show that this variant exhibits an unusual preference for binding dCTP opposite a templating adenine over the cognate dTTP. Biochemical studies indicate that the noncognate competes with the cognate nucleotide for binding to the polymerase active site with the noncognate incorporation a function of higher affinity and not increased activity. In the crystal structure of the variant bound to dA:dCTP, the fingers domain closes around the mismatched base pair. Nucleotide incorporation is hindered because key residues in the polymerase active site are not properly positioned for nucleotidyl transfer. In contrast to the noncognate dCTP, neither the cognate dTTP nor its nonhydrolyzable analog induced fingers closure, as isomorphous difference Fourier maps show that the cognate nucleotides are bound to the open state of the polymerase. Comparison with published structures provides insight into the structural rearrangements within pol β that occur during the process of nucleotide discrimination.  相似文献   

15.
Apurinic/apyrimidinic (AP) sites are continuously generated in genomic DNA. Left unrepaired, AP sites represent noninstructional premutagenic lesions that are impediments to DNA synthesis. When DNA polymerases encounter an AP site, they generally insert dAMP. This preferential insertion is referred to as the A-rule. Crystallographic structures of DNA polymerase (pol) β, a family X polymerase, with active site mismatched nascent base pairs indicate that the templating (i.e. coding) base is repositioned outside of the template binding pocket thereby diminishing interactions with the incorrect incoming nucleotide. This effectively produces an abasic site because the template pocket is devoid of an instructional base. However, the template pocket is not empty; an arginine residue (Arg-283) occupies the space vacated by the templating nucleotide. In this study, we analyze the kinetics of pol β insertion opposite an AP site and show that the preferential incorporation of dAMP is lost with the R283A mutant. The crystallographic structures of pol β bound to gapped DNA with an AP site analog (tertrahydrofuran) in the gap (binary complex) and with an incoming nonhydrolyzable dATP analog (ternary complex) were solved. These structures reveal that binding of the dATP analog induces a closed polymerase conformation, an unstable primer terminus, and an upstream shift of the templating residue even in the absence of a template base. Thus, dATP insertion opposite an abasic site and dATP misinsertions have common features.  相似文献   

16.
R K Evans  B E Haley 《Biochemistry》1987,26(1):269-276
A photoactive nucleotide analogue of dUTP, 5-azido-2'-deoxyuridine 5'-triphosphate (5-N3dUTP), was synthesized from dUMP in five steps. The key reaction in the synthesis of 5-N3dUTP is the nitration of dUMP in 98% yield in 5 min at 25 degrees C using an excess of nitrosonium tetrafluoroborate in anhydrous dimethylformamide. Reduction of the resulting 5-nitro compound with zinc and 20 mM HCl gave 5-aminodeoxyuridine monophosphate (5-NH2dUMP). Diazotization of 5-NH2dUMP with HNO2 followed by the addition of NaN3 to the acidic diazonium salt solution gave a photoactive nucleotide derivative in 80-90% yield. The monophosphate product was identified as 5-N3dUMP by proton NMR, UV, IR, and chromatographic analysis as well as by the mode of synthesis and its photosensitivity. After formation of 5-N3dUTP through a chemical coupling of pyrophosphate to 5-N3dUMP, the triphosphate form of the nucleotide was found to support DNA synthesis by Escherichia coli DNA polymerase I at a rate indistinguishable from that supported by dTTP. When UMP was used as the starting compound, 5-N3UTP was formed in an analogous fashion with similar yields and produced a photoactive nucleotide which is a substrate for E. coli RNA polymerase. To prepare [gamma-32P]-5-N3dUTP for use as an active-site-directed photoaffinity labeling reagent, a simple method of preparing gamma-32P-labeled pyrimidine nucleotides was developed. [gamma-32P]-5-N3dUTP is an effective photoaffinity labeling reagent for DNA polymerase I and was found to bind to the active site with a 2-fold higher affinity than dTTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Kusumoto R  Masutani C  Iwai S  Hanaoka F 《Biochemistry》2002,41(19):6090-6099
The XP-V (xeroderma pigmentosum variant) gene product, human DNA polymerase eta (pol eta), catalyzes efficient and accurate translesion synthesis (TLS) past cis-syn thymine-thymine dimers (TT dimer). In addition, recent reports suggest that pol eta is involved in TLS past various other types of lesion, including an oxidative DNA damage, 8-hydroxyguanine. Here, we compare the abilities of pol alpha and pol eta to replicate across thymine glycol (Tg) using purified synthetic oligomers containing a 5R- or 5S-Tg. DNA synthesis by pol alpha was inhibited at both steps of insertion of a nucleotide opposite the lesion and extension from the resulting product, indicating that pol alpha can weakly contribute to TLS past Tg lesions. In contrast, pol eta catalyzed insertion opposite the lesion as efficient as that opposite undamaged T, while extension was inhibited especially on the 5S-Tg template. Thus, pol eta catalyzed relatively efficient TLS past 5R-Tg than 5S-Tg. To compare the TLS abilities of pol eta for these lesions, we determined the kinetic parameters of pol eta for catalyzing TLS past a TT dimer, an N-2-acetylaminofluorene-modified guanine, and an abasic site analogue. The possible mechanisms of pol eta-catalyzed TLS are discussed on the basis of these results.  相似文献   

18.
The incorporation of cytosine arabinoside monophosphate (araCMP) into DNA at internucleotide linkages by DNA polymerase alpha (DNA pol alpha) has been investigated by using oligonucleotide primed DNA templates. The products of reactions catalyzed by DNA pol alpha in vitro were analyzed on polyacrylamide gels to measure insertion of araCMP, extension from an araCMP 3' terminus, and binding of the enzyme to an araCMP 3' terminus. The results show that insertion of araCMP opposite dGMP in the DNA template is about 3-fold less efficient than insertion of dCMP. Extension from an araCMP 3' terminus by addition of the next complementary nucleotide is approximately 2000-fold less efficient than extension from a correctly base-paired 3' terminus. In the absence of the second substrate, dNTP, DNA pol alpha binds with approximately equal affinities to DNA templates that contain oligonucleotide primers with araCMP or dCMP positioned at the 3' terminus. In the presence of dNTP, the enzyme extends the araCMP 3' terminus or dissociates, but it is not trapped at the araCMP 3' terminus in a nonproductive ternary complex as is observed at the ddCMP 3' terminus. To determine if slow phosphodiester bond formation contributes to the observed extension rate from the araCMP 3' terminus by DNA pol alpha, oligonucleotide primers with araCMP positioned at the 3' terminus were elongated by addition of the alpha-phosphorothioate analogue of the next complementary nucleotide. The rate of extension from araCMP by addition of 2'-deoxyadenosine 5'-O-phosphorothioate (dAMP alpha S) was 6-fold slower than by addition of dAMP, indicating that bond formation is partially rate limiting in the extension reaction. Thus, inefficient extension from the araCMP 3' terminus is the major determinant contributing to the low incorporation frequency of araCMP into DNA by DNA pol alpha, and this inefficiency can be attributed, in part, to slower phosphodiester bond formation at the araCMP 3' terminus.  相似文献   

19.
Normal human fibroblasts treated with r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) yielded DNA polymerase alpha with elevated levels of activity, incorporated [3H]thymidine as a function of unscheduled DNA synthesis, and exhibited restoration of normal DNA-strand length as a function of unscheduled DNA synthesis. Lipoprotein-deficient fibroblasts treated with BPDE did not show elevated levels of DNA polymerase alpha activity, exhibited minimal [3H]thymidine incorporation, and had fragmented DNA after 24 h of repair in the absence of lipoprotein or phosphatidylinositol supplementation. When DNA polymerase beta activity was inhibited, cells with normal lipoprotein uptake exhibited [3H]thymidine incorporation into BPDE-damaged DNA but did not show an increase in DNA-strand length. DNA polymerase alpha activity and [3H]thymidine incorporation in lipoprotein-deficient fibroblasts increased to normal levels when the cells were permeabilized and low-density lipoproteins or phosphatidylinositol were introduced into the cells. DNA polymerase alpha isolated from normal human fibroblasts, but not from lipoprotein-deficient fibroblasts, showed increased specific activity after the cells were treated with BPDE. When BPDE-treated lipoprotein-deficient fibroblasts were permeabilized and 32P-ATP was introduced into the cells along with lipoproteins, 32P-labeled DNA polymerase alpha with significantly increased specific activity was isolated from the cells. These data suggest that treatment of human fibroblasts with BPDE initiates unscheduled DNA synthesis, as a function of DNA excision repair, which is correlated with increased activity of DNA polymerase alpha, and that increased DNA polymerase alpha activity may be correlated with phosphorylation of the enzyme in a reaction that is stimulated by low-density lipoprotein or by the lipoprotein component, phosphatidylinositol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号